ORIGINAL RESEARCH article
Front. Oncol.
Sec. Breast Cancer
Volume 15 - 2025 | doi: 10.3389/fonc.2025.1586262
This article is part of the Research TopicAI-Powered Insights: Predicting Treatment Response and Prognosis in Breast CancerView all 3 articles
External validation of the Oncotype DX breast cancer recurrence score nomogram and development and validation of a novel machine learning-based model to predict postoperative overall survival and guide adjuvant chemotherapy in ER positive, Her-2 negative breast cancer patients: a retrospective cohort study
Provisionally accepted- 1Beijing Hospital, Beijing, Beijing, China
- 2Beijing Friendship Hospital, Capital Medical University, Beijing, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
This study aims to externally validate the performance of the Oncotype DX (ODX) breast cancer (BC) recurrence score nomogram in predicting adjuvant chemotherapy (ACT) for BC after surgery and subsequently develop a machine learning-based model to predict postoperative overall survival (OS) and guide ACT, demonstrating superior comprehensive performance. METHODS This analysis leveraged data from the SEER database spanning 2010-2020, alongside a BC cohort from the Beijing Hospital (BJH). Machine learning methods were applied for predictor selection by wrapper methods and the development of the predictive model. The optimal model was determined using the concordance index (C-index), time-dependent calibration curves, time dependent receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). The benefit analysis of ACT was primarily conducted using Kaplan-Meier survival analysis.The ODX nomogram performed poorly in predicting ACT benefit in both the SEER cohort and the BJH cohort. Subsequently, we employed ten machine learning methods to develop ten prognostic models. The Accelerated oblique random survival forest model (AORSFM), exhibiting the highest prediction performance, was selected. The C-index for AORSFM is 0.799 (95% CI 0.779-0.823) in the SEER cohort and 0.793 (95% CI 0.687-0.934) in the BJH cohort. Furthermore, time-dependent calibration curves, time-dependent ROC analysis, and DCA indicate that the AORSFM demonstrates good calibration, predictive accuracy, and clinical net benefit. A publicly accessible web tool was developed for the AORSFM. Notably, the new staging system based on AORSFM can provide guidance for postoperative ACT in such patients.The AORSF has the potential to identify postoperative OS and guide ACT in patients with BC. This can assist clinicians in assessing the severity of the disease, facilitating patient follow-up, and aiding in the formulation of adjuvant treatment strategies.
Keywords: breast cancer, machine learning, Prognostic model, guidance for adjuvant chemotherapy, Web calculator
Received: 02 Mar 2025; Accepted: 28 Apr 2025.
Copyright: © 2025 Wang, Wang and 杨. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Xin 杨, Beijing Hospital, Beijing, 100730, Beijing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.