ORIGINAL RESEARCH article
Front. Robot. AI
Sec. Robotic Control Systems
Volume 12 - 2025 | doi: 10.3389/frobt.2025.1528415
Hybrid Disturbance Observer and Fuzzy Logic Controller for a New Aerial Manipulation System
Provisionally accepted- 1Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menoufia University,Menouf 32952, Egypt, Menouf, Monufia, Egypt
- 2Cardiff School of technologies, Cardiff Metropolitan University, Cardiff, UK, Cardiff, United Kingdom
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Aerial manipulation systems are highly attractive for various applications due to their distinctive features. However, the systems discussed in the literature are constrained by either a restricted number of end-effector degrees of freedom (DOFs) or low payload capability. In our previous research, we mounted a manipulator with a gripper on the underside of a quadrotor to enhance environmental interaction. This paper explores a quadrotor equipped with a 2-DOF manipulator featuring a distinctive topology that allows the end-effector to follow a specified 6-DOF trajectory with the least number of actuators required. An overview of the proposed manipulation system, along with its kinematic and dynamic analysis, is presented. Nevertheless, controlling this system presents significant challenges because of its considerable couplings, nonlinearities, and external disturbances. This paper employs a Disturbance Observer (DOb)-based linearization for an aerial manipulation robot. The DOb-based inner loop is responsible for estimating and compensating nonlinearities and disturbances, which simplifies the control problem into a more straightforward linear control algorithm. Subsequently, a fuzzy logic controller is incorporated into the outer loop to achieve the desired control objectives and closed-loop performance while minimizing computational load. Stability analysis of the proposed controller is introduced. Finally, the system is simulated using MATLAB/SIMULINK, and the results demonstrate tracking accuracy during 6-DOF maneuvers under many kinds of disturbances, with low computational load. The system maintains stability during payload exchanges while respecting all actuator constraints (rotor thrust less than 6 N, joint torques less than 0.7 and 0.4 N.m, respectively). These results demonstrate the effectiveness of the proposed control approach. Also, they show that the proposed controller outperforms the DOb-PD controller's response.
Keywords: Aerial manipulation, dynamics, Disturbance observer, Fuzzy logic controller, kinematics, Quadrotor
Received: 14 Nov 2024; Accepted: 02 Jun 2025.
Copyright: © 2025 KHALIFA and Khalifa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: ALAA KHALIFA, Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menoufia University,Menouf 32952, Egypt, Menouf, Monufia, Egypt
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.