ORIGINAL RESEARCH article
Front. Sustain. Food Syst.
Sec. Sustainable Food Processing
Volume 9 - 2025 | doi: 10.3389/fsufs.2025.1570465
Sauerkraut juice fermented with different symbiotic starter cultures: Comprehensive assessment of physicochemical, rheological, antioxidant, and microbiological characteristics
Provisionally accepted- Tomas Bata University in Zlín, Zlín, Czechia
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The current study investigated the fermentation of sauerkraut juice (SKJ) utilizing various symbiotic starter cultures (specifically kombucha and water kefir starter cultures, respectively). It aimed to assess the physicochemical, rheological, antioxidant, and microbiological properties of the resulting beverages. Black tea kombucha and apple juice water kefir fermented beverages were also analyzed for comparative purposes. Key parameters such as pH values, total acidity, total soluble solids, and total dissolved solids were measured. The initial pH exhibited significant variation, decreasing over the course of fermentation due to organic acid production. As fermentation progressed, total acidity increased, a phenomenon attributed to the activities of acetic and lactic acid bacteria. The flow behavior of the fermented beverages was characterized using the Power-law model, revealing that most samples displayed non-Newtonian behavior, indicating that their viscosity and shear stress changed with shear rate. Specifically, the consistency index declined while the flow behavior index rose. Additionally, seven biogenic amines were detected in the fermented samples, with their low concentrations posing minimal risk to consumer safety, resulting from microbial activity during fermentation. Antioxidant activity was assessed using DPPH and ABTS radical scavenging assays, revealing that black tea kombucha showed the highest levels of antioxidant activity. The total phenolic content varied between samples and decreased over time, particularly in the water kefir-like beverages. The microbiological analysis indicated a gradual increase in beneficial microorganisms, such as lactic acid bacteria and yeasts, throughout the fermentation process. These findings underscore the potential of SKJ as a promising base for developing functional beverages, providing valuable insights into how different fermentation starter cultures influence the quality and health-promoting properties of fermented beverages. In light of the growing consumer interest in functional, particularly plant-based foods, the fermentation of SKJ presents an opportunity to create probiotic-rich beverages.
Keywords: sauerkraut juice, black tea, apple juice, kombucha, water kefir, rheology, biogenic amines, antioxidants 1excellent, 3good, 5unacceptable, taste: 1excellent, 3good, 5unacceptable, aroma: 1excellent, 3good, 5 unacceptable, overall rating: 1extraordinarily good, 5extremely bad
Received: 03 Feb 2025; Accepted: 12 May 2025.
Copyright: © 2025 Salek, Pleva, Sumczynski, Vinter, Kopečková, Rejdlová and Lorencová. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Eva Lorencová, Tomas Bata University in Zlín, Zlín, Czechia
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.