Impact Factor 4.416
2017 JCR, Clarivate Analytics 2018

Frontiers journals are at the top of citation and impact metrics

Original Research ARTICLE

Front. Oncol., 19 November 2018 | https://doi.org/10.3389/fonc.2018.00530

Serum Level of Soluble CD163 May Be a Predictive Marker of the Effectiveness of Nivolumab in Patients With Advanced Cutaneous Melanoma

Taku Fujimura1*, Yota Sato1, Kayo Tanita1, Yumi Kambayashi1, Atsushi Otsuka2, Yasuhiro Fujisawa3, Koji Yoshino4, Shigeto Matsushita5, Takeru Funakoshi6, Hiroo Hata7, Yuki Yamamoto8, Hiroshi Uchi9, Yumi Nonomura2, Ryota Tanaka3, Megumi Aoki5, Keisuke Imafuku7, Hisako Okuhira8, Naoko Wada9, Hiroyuki Irie2, Takanori Hidaka1, Akira Hashimoto1 and Setsuya Aiba1
  • 1Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
  • 2Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
  • 3Department of Dermatology, Faculty of University of Tsukuba, Tsukuba, Japan
  • 4Department of Dermatology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
  • 5Department of Dermato-Oncology, Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
  • 6Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
  • 7Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
  • 8Department of Dermatology, Wakayama Medical University, Wakayama, Japan
  • 9Department of Dermatology, Kyushu University Graduate School of Medicine, Fukuoka, Japan

Antibodies against programmed cell death protein 1, such as nivolumab and pembrolizumab, are widely used for treating various cancers, including advanced melanoma. Nivolumab significantly prolongs survival in patients with metastatic melanoma, and sequential administration with lipilimumab may improve outcomes when switched at the appropriate time. Biomarkers are therefore needed to evaluate nivolumab efficacy soon after first administration. This study analyzed serum levels of soluble cluster of differentiation 163 (sCD163) in 59 cases of advanced cutaneous melanoma and 16 cases of advanced mucosal melanoma treated using nivolumab. Serum levels of sCD163 were significantly increased after 6 weeks in responders compared to non-responders after initial administration of nivolumab for cutaneous melanoma. In contrast, no significant difference between responders and non-responders was seen among patients with non-cutaneous melanoma. These results suggest that sCD163 may be useful as a biomarker for selecting patients with advanced cutaneous melanoma most likely to benefit from anti-melanoma immunotherapy.

Introduction

The programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway plays a critical role in tumor immune response. Anti-PD-1 antibodies such as nivolumab and pembrolizumab are thus in wide use for the treatment of various cancers, including advanced melanoma (1, 2). Nivolumab significantly prolongs survival in patients with metastatic melanoma (1), and co-administration with ipilimumab also leads to improved outcomes (13). Ipilimumab is a fully humanized immunoglobulin (Ig)G1 monoclonal antibody that blocks cytotoxic T-lymphocyte antigen (CTLA-4) to activate and increase T cells, and suppress the function of regulatory T cells (Tregs) (4). Previous reports have suggested ipilimumab is useful for treating advanced melanoma, particularly in combination with other anti-melanoma reagents (13, 5). Moreover, combination therapy using nivolumab and ipilimumab reportedly increases the response rate for untreated metastasis of melanoma to the brain (6). However, the efficacy of ipilimumab in patients with nivolumab-resistant melanoma is extremely low after objective tumor progression (7). Because both co-administration of nivolumab and ipilimumab and sequential administration of nivolumab and ipilimumab with a planned switch leads to a high frequency of immune-related adverse events (irAEs) in patients with advanced melanoma (1, 3), determining the efficacy of nivolumab monotherapy before the planned switch from nivolumab to ipilimumab is important.

Tumor-associated macrophages (TAMs) are characterized by their heterogeneity and plasticity, and may be functionally reprogrammed to polarized phenotypes by exposure to cancer-related factors, stromal factors, or infection, leading to the production of various chemokines that play significant roles in maintaining the tumor microenvironment (813). Because PD-1 expression in TAMs is one of the key factors in M2 macrophage polarization (14), administration of an anti-PD1 antibody might repolarize TAMs, leading to TAM activation in melanoma patients. Because the main population of TAMs in skin cancer is CD163+ M2 macrophages, and soluble cluster of differentiation 163 (sCD163) is a TAM marker that appears in the serum as a result of proteolytic shedding (15), we hypothesized that serum sCD163 may offer a predictive marker for the efficacy of nivolumab in the early stage of disease. This study analyzed serum levels of sCD163 in 59 cases of advanced cutaneous melanoma and 16 cases of advanced mucosal melanoma treated with nivolumab.

Patients and Methods

Ethics Statement for Human Experiments

The protocol for this human study was approved by the ethics committee of Tohoku University Graduate School of Medicine, Sendai, Japan (Permit No: 2017-1-064). All methods were performed in accordance with the relevant guidelines and regulations. All patients provided written informed consent.

Patients

Data from patients treated with nivolumab were collected from eight clinical sites in Japan. Patients were eligible if they had unresectable stage III melanoma, the tumor was resectable but the patient had declined resection, or if the patient had stage IV melanoma with accessible cutaneous, subcutaneous, and/or nodal lesions (staging was performed according to the AJCC Staging Manual, 7th edition, 2011). All patients received 2 mg/kg of nivolumab followed by a 3-week rest period or 3 mg/kg of nivolumab followed by 2 weeks of rest, both of which are approved dosing schedules in Japan. Serum from patients was obtained on days 0 and 42.

Serum Levels of sCD163

On days 0 and 42 after nivolumab administration, we stored the serum and analyzed serum levels of soluble sCD163 by enzyme-linked immunoassay (ELISA) according to the protocol provided by the manufacturer (catalog number DY1607; R&D Systems, Minneapolis, MN). Data from each donor were obtained as the mean of duplicate assays. Serum levels on day 42 were compared to baseline (day 0) and statistically analyzed.

Statistical Methods

Receiver operating characteristic (ROC) curves were applied to calculate cut-off values for serum levels of sCD163 and areas under the curve (AUCs). Cut-offs were determined using Youden's index (16) (sensitivity + specificity −1) to determine the point of maximum index value. ROC curves were established to evaluate serum levels of sCD163 in patients administered nivolumab. For a single comparison between two groups, the Mann-Whitney U-test was used. Levels of significance were set at p < 0.01. All statistical analyses were performed using JMP version 14.1 software (SAS Institute, Tokyo, Japan).

Results

Patients

We collected data from 75 melanoma patients treated with nivolumab, including 59 patients with cutaneous melanoma (Table 1) and 16 patients with non-cutaneous (e.g., digestive tract, vagina, nasal cavity) melanoma (Table 2). Mean patient age was 68.0 years for cutaneous melanoma (range, 31–93 years) and 66.0 years for non-cutaneous melanoma (range, 54–82 years). The percentages of male patients with cutaneous and non-cutaneous melanoma were 57.6 and 56.3%, respectively. The most common primary tumor site was the extremities (55.9%), followed by the head and neck (15.3%), trunk (11.9%), mucosal origin (8.5%), and unknown origin (8.5%).

TABLE 1
www.frontiersin.org

Table 1. Characteristics and serum levels of sCD163 in patients with cutaneous melanoma.

TABLE 2
www.frontiersin.org

Table 2. Characteristics and serum levels of sCD163 in patients with non-cutaneous melanoma.

Efficacy of Nivolumab at 3 Months After First Administration

Among patients with cutaneous melanoma, complete response (CR) was seen in 1 patient (1.7%; 95% confidence interval [CI], 0–3.4%), partial response (PR) in 12 patients (20.3%; 95%CI, 0–40.6%), stable disease (SD) in 16 patients (27.1%; 95%CI, 0–54.2%), and progressive disease (PD) in 29 patients (49.2%; 95%CI, 0–98.4%). The objective response rate (ORR) at 3 months after first administration was thus 22.0% (95%CI, 0–44.0%). Tumor responses of individual patients are listed in Table 1. Among patients with mucosal melanoma, PR was seen in 4 patients (25.0%; 95%CI, 0–50.0%), SD in 5 patients (31.3%; 95%CI, 0–62.6%), and PD in 7 patients (43.8%; 95%CI, 0–87.6%). The ORR at 3 months after first administration was thus 25.0% (95%CI, 0–50.0%). Tumor responses of individual patients are listed in Table 2.

Serum Levels of sCD163

To determine whether serum levels of sCD163 may predict early response in melanoma patients treated with nivolumab, we evaluated levels in 75 patients with advanced melanoma treated using nivolumab (Supplemental Figure 1). Compared to baseline (day 0), serum levels of sCD163 at day 42 were significantly increased in the group showing objective response (p < 0.0001; Figure 1A) among patients with advanced cutaneous melanoma, whereas no significant difference in serum sCD163 levels was seen among patients with advanced mucosal melanoma (Figure 2A). Increases in serum sCD163 and efficacy at 3 months after the first administration of nivolumab in each patient are described in Tables 1, 2. The thresholds for sCD163 change between day 42 and day 0 to distinguish responders from non-responders were respectively 3.07 ± 0.07 ng/mL and 0.47 ± 0.05 ng/mL in cutaneous and non-cutaneous melanoma. In the cutaneous melanoma cohort, the mean change ratio in sCD163 serum level was 144.6% for those patients showing objective response, compared to 101.0% for non-responders (Table 1). In the mucosal melanoma cohort, the mean change ratio in sCD163 serum level was 84.1% for those patients showing objective response, and 122.3% for non-responders (Table 2). The threshold for increased serum sCD163 in cutaneous melanoma was 3.07 ± 0.07 ng/mL, whereas that in non-cutaneous melanoma was 0.47 ± 0.05 ng/mL. The sensitivity and specificity of serum sCD163 in cutaneous melanoma were 84.6 and 87.0%, respectively (p = 0.0030; Figure 1B), whereas the sensitivity and specificity of serum sCD163 in non-cutaneous melanoma were 100 and 66.7%, respectively (p = 0.3154; Figure 2B).

FIGURE 1
www.frontiersin.org

Figure 1. Serum levels of sCD163 and ROC curve in cutaneous melanoma. Serum level changes of sCD163 in each patient (n = 59) (A) on day 42. The ROC curve was applied to calculate cut-offs for sCD163 serum levels and AUC (B). Cut-offs were determined to distinguish responders from nonresponders using Youden's index.

FIGURE 2
www.frontiersin.org

Figure 2. Serum levels of sCD163 and ROC curve in non-cutaneous melanoma. Serum level changes of sCD163 in each patient (n = 16) (A) on day 42. The ROC curve was applied to calculate cut-offs for sCD163 serum levels and AUC (B). Cut-offs were determined to distinguish responders from nonresponders using Youden's index.

Discussion

Because nivolumab shows higher efficacy than other anti-melanoma drugs (e.g., ipilimumab and dacarbazine) (1, 17), and induces a longer duration of anti-tumor response than BRAF/MEK inhibitors (e.g., vemurafenib, dabrafenib, trametinib) (18, 19), oncologists have been particularly interested in combining nivolumab with agents that enhance anti-tumor immune responses in patients with metastatic melanoma (13, 20). The efficacy of nivolumab appears significantly increased when combined with ipilimumab (57.7%), but the rate of severe treatment-related AEs (Grade 3 or 4) is unfortunately also significantly increased with this particular combination (59.0%) (1, 2). To avoid severe AEs caused by ipilimumab, predictive biomarkers are needed to evaluate the efficacy of nivolumab monotherapy at 2–3 months after first administration, to prepare for any planned switch from nivolumab to ipilimumab.

CD163 is a member of the scavenger receptor cysteine-rich family, and is exclusively expressed on cells of the monocyte/macrophage lineage (15). As previously reported, in metastatic melanoma, a substantial number of CD163+ TAMs are present in metastatic melanoma and are activated by stromal factors, leading to an increase in serum levels of sCD163 as a result of proteolytic shedding (2123). In addition, Jensen et al. (21) previously reported sCD163 and CD163+ TAMs as a prognostic marker for early-stage cutaneous melanoma. Notably, as Gordon et al. (14) reported, PD-1 expression is a key factor in maintaining TAMs as M2-polarized, and blockade of PD-1/PD-L1 leads to conversion of TAMs into M1-polarized activated macrophages. Because TAMs in melanoma comprise a heterogeneous, mainly immunosuppressive population (9, 23), and because repolarization of TAMs into the activated subtype by immunomodulatory drugs has been reported to significantly suppress melanoma growth in a spontaneous mouse melanoma model (8), we hypothesized that one of the targets for nivolumab in melanoma is activated CD163+ TAMs.

To prove our hypothesis, we analyzed serum levels of sCD163 in 59 cases of advanced cutaneous melanoma and 16 cases of advanced mucosal melanoma treated with nivolumab. Serum levels of sCD163 were significantly increased 6 weeks after initial administration of nivolumab in the response group compared to the non-response group in cutaneous melanoma. In contrast, no significant difference between nivolumab responders and non-responders was seen for non-cutaneous melanoma. Interestingly, in non-cutaneous melanoma, serum levels of sCD163 in non-responders tended to be even higher than those in responders. This discrepancy might be explained by differences in cancer stroma that could stimulate TAMs in the tumor microenvironment of each organ. Such studies should be performed in the future.

According to the present results, sCD163 may represent a predictive biomarker for evaluating the efficacy of nivolumab at 3 months after first administration for advanced cutaneous melanoma. Because sequential administration of ipilimumab followed by nivolumab is only effective for advanced melanoma before the melanoma develops tolerance for nivolumab (7), and administration of ipilimumab leads to the development of irAEs more frequently than nivolumab (2, 3), predicting the efficacy of nivolumab before first tumor estimation is crucial to determining whether the patient will successfully adapt to the planned switch from nivolumab to ipilimumab therapy. The present study suggested that sCD163 may be a useful biomarker for the selection of those cutaneous melanoma patients most likely to benefit from anti-melanoma immunotherapy using nivolumab and ipilimumab. Because this was a pilot study, future independent studies with larger patient cohorts are needed to confirm our findings.

Author Contributions

TFuj designed the research study. TFuj, YS, KT, and YK performed and analyzed the ELISA data. TFuj, YK, AO, YF, KY, SM, TFun, HH, YY, HU, YN, RT, MA, KI, HO, NW, HI, TH, and AH treated the patients and acquired the clinical data and samples. TFuj wrote the manuscript. TFuj and SA supervised the study.

Funding

This study was partially funded by Ono Pharmaceutical Co., Ltd. and Bristol-Myers Squibb.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

This study was supported in part by the Japan Agency for Medical Research and Development (l8cm01643h0001) and grants-in-aid for scientific research from the Japan Society for the Promotion of Science (16K10143).

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2018.00530/full#supplementary-material

Supplemental Figure 1. Serum levels of sCD163 at day 0 in patients with cutaneous and non-cutaneous melanoma. Mean serum levels of sCD163 in responders (n = 13) and non-responders (n = 46) at day 0 (A). Mean serum levels of sCD163 in responders (n = 4) and non-responders (n = 12) at day 0 (B) n.s, not significant.

References

1. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. (2017) 377:1345–56. doi: 10.1056/NEJMoa1709684

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. (2015) 373:23–34. doi: 10.1056/NEJMoa1504030

CrossRef Full Text | Google Scholar

3. Weber JS, Gibney G, Sullivan RJ, Sosman JA, Slingluff CL Jr, Lawrence DP, et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncol. (2016) 17:943–55. doi: 10.1016/S1470-2045(16)30126-7

PubMed Abstract | CrossRef Full Text | Google Scholar

4. Callahan MK, Wolchok JD, Allison JP. Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin Oncol. (2010) 37 :473–84. doi: 10.1053/j.seminoncol.2010.09.001

PubMed Abstract | CrossRef Full Text | Google Scholar

5. Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. (2011) 364:2517–26. doi: 10.1056/NEJMoa1104621

PubMed Abstract | CrossRef Full Text | Google Scholar

6. Tawbi HA, Forsyth PA, Algazi A, Hamid O, Hodi FS, Moschos SJ, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med. (2018); 379:722–30. doi: 10.1056/NEJMoa1805453

PubMed Abstract | CrossRef Full Text | Google Scholar

7. Fujisawa Y, Yoshino K, Otsuka A, Funakoshi T, Fujimura T, Yamamoto Y, et al. Retrospective study of advanced melanoma patients treated with ipilimumab after nivolumab: analysis of 60 Japanese patients. J Dermatol Sci. (2018) 89:60–6. doi: 10.1016/j.jdermsci.2017.10.009

PubMed Abstract | CrossRef Full Text | Google Scholar

8. Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. (2018) 215:877–93. doi: 10.1084/jem.20171435

PubMed Abstract | CrossRef Full Text | Google Scholar

9. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity (2014) 41:49–61. doi: 10.1016/j.immuni.2014.06.010.Review

PubMed Abstract | CrossRef Full Text | Google Scholar

10. Fujimura T, Kambayashi Y, Furudate S, Asano M, Kakizaki A, Aiba S. Receptor activator of nuclear factor kappa-B ligand (RANKL) promotes the production of CCL17 from RANK+ M2 macrophages. J Invest Dermatol. (2015) 135:2884–7. doi: 10.1038/jid.2015.209

CrossRef Full Text | Google Scholar

11. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. (2016) 99(Pt B):180–5. doi: 10.1016/j.addr.2015.11.009

CrossRef Full Text | Google Scholar

12. Caronni N, Savino B, Bonecchi R. Myeloid cells in cancer-related inflammation. Immunobiology (2015) 220:249–53. doi: 10.1016/j.imbio.2014.10.001

PubMed Abstract | CrossRef Full Text | Google Scholar

13. Furudate S, Fujimura T, Kakizaki A, Kambayashi Y, Asano M, Watabe A, et al. The possible interaction between periostin expressed by cancer stroma and tumor-associated macrophages in developing mycosis fungoides. Exp Dermatol. (2016) 25:107–12. doi: 10.1111/exd.12873

PubMed Abstract | CrossRef Full Text | Google Scholar

14. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature (2017) 545:495–9. doi: 10.1038/nature22396

PubMed Abstract | CrossRef Full Text | Google Scholar

15. Van Gorp H, Delputte PL, Nauwynck HJ. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol Immunol. (2010) 47:1650–60. doi: 10.1016/j.molimm.2010.02.008

CrossRef Full Text | Google Scholar

16. Youden WJ: Index for rating diagnostic tests. Cancer (1950) 3:32–35.

17. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. (2015) 372:320–30. doi: 10.1056/NEJMoa1412082

PubMed Abstract | CrossRef Full Text | Google Scholar

18. McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. (2014) 15:323–32. doi: 10.1016/S1470-2045(14)70012-9

PubMed Abstract | CrossRef Full Text | Google Scholar

19. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. (2014) 371:1877–88. doi: 10.1056/NEJMoa1406037

PubMed Abstract | CrossRef Full Text | Google Scholar

20. Fujimura T, Hidaka T, Kambayashi Y, Furudate S, Kakizaki A, Tono H, et al. Phase I study of nivolumab combined with IFN-β for patients with advanced melanoma. Oncotarget (2017) 8:71181–7. doi: 10.18632/oncotarget.17090

PubMed Abstract | CrossRef Full Text | Google Scholar

21. Jensen TO, Schmidt H, Møller HJ, Høyer M, Maniecki MB, Sjoegren P, et al. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J Clin Oncol. (2009) 27:3330–7. doi: 10.1200/JCO.2008.19.9919

PubMed Abstract | CrossRef Full Text | Google Scholar

22. Fujimura T, Sato Y, Tanita K, Kambayashi Y, Otsuka A, Fujisawa Y, et al. Serum soluble CD163 and CXCL5 could be predictive markers for immune related adverse event in patients with advanced melanoma treated with nivolumab. Oncotarget (2018) 9:15542–51. doi: 10.18632/oncotarget.24509

CrossRef Full Text | Google Scholar

23. Fujimura T, Kambayashi Y, Fujisawa Y, Hidaka T, Aiba S. Tumor-associated macrophages: therapeutic targets for skin cancer. Front Oncol. (2018) 8:3. doi: 10.3389/fonc.2018.00003

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: sCD163, TAMs, melanoma, nivolumab, prediction of efficacy

Citation: Fujimura T, Sato Y, Tanita K, Kambayashi Y, Otsuka A, Fujisawa Y, Yoshino K, Matsushita S, Funakoshi T, Hata H, Yamamoto Y, Uchi H, Nonomura Y, Tanaka R, Aoki M, Imafuku K, Okuhira H, Wada N, Irie H, Hidaka T, Hashimoto A and Aiba S (2018) Serum Level of Soluble CD163 May Be a Predictive Marker of the Effectiveness of Nivolumab in Patients With Advanced Cutaneous Melanoma. Front. Oncol. 8:530. doi: 10.3389/fonc.2018.00530

Received: 30 June 2018; Accepted: 30 October 2018;
Published: 19 November 2018.

Edited by:

Marie-France Penet, School of Medicine, Johns Hopkins University, United States

Reviewed by:

Ellen Ackerstaff, Memorial Sloan Kettering Cancer Center, United States
Goutam Chakraborty, Memorial Sloan Kettering Cancer Center, United States
Tone Frost Bathen, Norwegian University of Science and Technology, Norway

Copyright © 2018 Fujimura, Sato, Tanita, Kambayashi, Otsuka, Fujisawa, Yoshino, Matsushita, Funakoshi, Hata, Yamamoto, Uchi, Nonomura, Tanaka, Aoki, Imafuku, Okuhira, Wada, Irie, Hidaka, Hashimoto and Aiba. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Taku Fujimura, tfujimura1@mac.com