Impact Factor 1.895 | CiteScore 2.24
More on impact ›

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Phys. | doi: 10.3389/fphy.2019.00182

Manifestations of Projection-Induced Memory: General Theory and the Tilted Single File

  • 1Max Planck Institute for Biophysical Chemistry, Germany

Over the years the field of non-Markovian stochastic processes and anomalous diffusion evolved from a specialized topic to mainstream theory, which transgressed the realms of physics to chemistry, biology and ecology. Numerous phenomenological approaches emerged, which can more or less successfully reproduce or account for experimental observations in condensed matter, biological and/or single-particle systems. However, as far as their predictions are concerned these approaches are not unique, often build on conceptually orthogonal ideas, and are typically employed on an ad hoc basis. It therefore seems timely and desirable to establish a systematic, mathematically unifying and clean approach starting from more fine-grained principles. Here we analyze projection-induced ergodic non-Markovian dynamics, both reversible as well as irreversible, using spectral theory. We investigate dynamical correlations between histories of projected and latent observables that give rise to memory in projected dynamics, and rigorously establish conditions under which projected dynamics is Markovian or renewal. A systematic metric is proposed for quantifying the degree of non-Markovianity. As a simple, illustrative but non-trivial example we study single file diffusion in a tilted box, which, for the first time, we solve exactly using the coordinate Bethe ansatz. Our results provide a solid foundation for a deeper and more systematic analysis of projection-induced non-Markovian dynamics and anomalous diffusion.

Keywords: Fokker-Planck equation, spectral theory and eigenvalues problems for partial differential operators, Projection operator method, Occupation time, Single file diffusion, Bethe Ansatz, Free energy landscape

Received: 26 Aug 2019; Accepted: 28 Oct 2019.

Copyright: © 2019 Lapolla and Godec. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Aljaz Godec, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Lower Saxony, Germany,