Your new experience awaits. Try the new design now and help us make it even better

ORIGINAL RESEARCH article

Front. Earth Sci.

Sec. Georeservoirs

Volume 13 - 2025 | doi: 10.3389/feart.2025.1696774

The influence mechanism of natural fractures on hydraulic fracture propagation in Mabei shale reservoir

Provisionally accepted
Renzhong  GanRenzhong Gan1Lianming  FuLianming Fu1Ruan  DongRuan Dong1Yue  WuYue Wu1Sicheng  HSicheng H1Yi  DingYi Ding2*Xiangjun  LiuXiangjun Liu2
  • 1Xinjiang Oilfield Company, Karamay, China
  • 2Southwest Petroleum University, Chengdu, China

The final, formatted version of the article will be published soon.

The resource potential of shale in Fengcheng formation in Mabei is huge, but it must rely on efficient hydraulic fracturing technology to obtain reservoir stimulation and achieve economic development. The propagation of hydraulic fractures in shale oil reservoir is significantly affected by natural fractures, and the interaction mechanism between hydraulic fractures and natural fractures is the key of realizing the optimal fracturing design. In particular, shale oil reservoir has complex conditions, such as interlayer blocking effect, differentiation of natural fracture development and variation of formation dip angle. In that case, the influence law of natural fracture on hydraulic fracture propagation is not clear, which restricts efficient development of shale oil. Therefore, based on the mechanical properties of shale in the Fengcheng formation, numerical model of the intersection of natural fractures and hydraulic fracture has been built. This intersection behaviors with different approach angle, interlayer stress and strength, natural fracture development degree and formation inclination have been fully analyzed. The results indicate that the hydraulic fracture is more favorable to penetrate the natural fracture with the increasing of the approaching angle. The barrier layer is conducive to the hydraulic fracture penetrating the natural fracture, restricting activation of the natural fracture. Also, the stress barrier effect is greater than the strength barrier effect. With the increase of the development degree of natural fractures, a large number of fractures weaken the overall strength of the formation, which is more conducive to the propagation of hydraulic fractures. When formation dip is large and propagation from weak strength to strong strength formation, hydraulic fracture is more susceptible to the influence of natural fractures and show the characteristics of turning along natural fractures. Outcomes deepen the understanding of the interaction mechanism between natural fracture and hydraulic fracture, which is beneficial for the optimal fracturing design and providing theoretical support for shale oil exploitation.

Keywords: natural fracture, hydraulic fracture, Fracture propagation, Barrier layer, Formation dip

Received: 01 Sep 2025; Accepted: 23 Sep 2025.

Copyright: © 2025 Gan, Fu, Dong, Wu, H, Ding and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Yi Ding, dingswpu@foxmail.com

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.