REVIEW article
Front. Ecol. Evol.
Sec. Population, Community, and Ecosystem Dynamics
Volume 13 - 2025 | doi: 10.3389/fevo.2025.1587171
Trophic cascades and top-down control: found at sea
Provisionally accepted- University of British Columbia, Vancouver, Canada
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
This review investigates the current state of knowledge on trophic control and cascades in marine ecosystems. It critically examines claims that top-down control and trophic cascades are rarer in saltwater ecosystems than in their freshwater counterparts, that these phenomena are scarcer in the marine water column than in intertidal or benthic habitats, and that various abiotic and/or biotic factors explain the incidence of top-down control and trophic cascades in neritic and pelagic ecosystems. This review suggests that top-down control is more widespread in neritic and pelagic ecosystems than species-level trophic cascades, which in turn are more frequent than communitylevel cascades. The latter occur more often in marine benthic ecosystems than in their lacustrine and neritic counterparts and are least frequently found in pelagic ecosystems. These distinctions among ecosystem types likely derive from differences in the spatial dimensionality and scale of physical processes through their effects on nutrient availability and community composition. The incidence of community-level trophic cascades among neritic and pelagic ecosystems is inversely related to biodiversity and omnivory, which are in turn associated with temperature. Regional variability in benthic and neritic trophodynamics also results from differences in producer and consumer traits and food web structure. Fear of predators, rather than predation mortality itself, drives many marine trophic cascades and massive vertical migrations. Paradoxical and synergistic trophic interactions, as well as positive feedback loops derived from biological nutrient cycling, complicate the conventional dichotomy between top-down and bottom-up control. Finally, this review presents a set of ecological factors whose alternative states favor top-down or bottom-up control in marine ecosystems.
Keywords: Trophodynamics, Trophic cascades, top-down-control, marine ecology, Marine Ecosystems, benthic ecosystems, neritic ecosystems, Pelagic ecosystems
Received: 04 Mar 2025; Accepted: 23 Jun 2025.
Copyright: © 2025 Surma, Pakhomov and Pitcher. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Szymon Surma, University of British Columbia, Vancouver, Canada
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.