Skip to main content

ORIGINAL RESEARCH article

Front. Public Health, 21 October 2024
Sec. Infectious Diseases: Epidemiology and Prevention
This article is part of the Research Topic Global Infectious Disease Surveillance Technologies and Data Sharing Protocols View all 8 articles

Advanced optimal control approaches for immune boosting and clinical treatment to enhance dengue viremia models using ABC fractional-order analysis

  • 1Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
  • 2Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Ostrava, Czechia
  • 3Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India

Introduction: This work focuses on the Dengue-viremia ABC (Atangana-Baleanu Caputo) fractional-order differential equations, accounting for both symptomatic and asymptomatic infected cases. Symptomatic cases are characterized by higher viremia levels, whereas asymptomatic cases exhibit lower viremia levels. The fractional-order model highlights memory effects and other advantages over traditional models, offering a more comprehensive representation of dengue dynamics.

Methods: The total population is divided into four compartments: susceptible, asymptomatic infected, symptomatic infected, and recovered. The model incorporates an immune-boosting factor for asymptomatic infected individuals and clinical treatment for symptomatic cases. Positivity and boundedness of the model are validated, and both local and global stability analyses are performed. The novel Adams-Bash numerical scheme is utilized for simulations to rigorously assess the impact of optimal control interventions.

Results: The results demonstrate the effectiveness of the proposed control strategies. The reproduction numbers must be reduced based on specific optimal control conditions to effectively mitigate disease outbreaks. Numerical simulations confirm that the optimal control measures can significantly reduce the spread of the disease.

Discussion: This research advances the understanding of Dengue-viremia dynamics and provides valuable insights into the application of ABC fractional-order analysis. By incorporating immune-boosting and clinical treatment into the model, the study offers practical guidelines for implementing successful disease control strategies. The findings highlight the potential of using optimal control techniques in public health interventions to manage disease outbreaks more effectively.

1 Introduction

Worldwide, thousands of dengue cases are reported every year. The world's tropical and subtropical regions are affected by dengue infection, which is a mosquito-carrying disease. A high temperature and flu-like symptoms are signs of mild illness or asymptomatic to stern disease. DHF (Dengue Hemorrhagic Fever) or DSS (Dengue Show Syndromes Syndromes) is a highly infectious form of dengue fever that causes serious bleeding, shock, and death. Generally, it was noticed that only one out of four dengue contagions is symptomatic. Dengue virus occurs in four major types (DENV types 1, 2, 3, and 4), all of which can cause serious illness. The usual signs of DENV type 1 are like a common cold and mild fever, which will not lead directly to DHF; conversely, later DENV types can lead to DHF (13).

To understand the dynamical behavior of dengue transmission, we formulated a mathematical model, particularly focusing on vector-borne disease transmission from mosquitoes to humans. Esteva and Vargas (4, 5) pioneered the creation of a fundamental dengue model and explored numerous fundamental mathematical concepts and their accompanying numerical simulations. Feng et al. (6) presented a two-strain dengue infection model and examined competitive exclusion. Researchers have conducted numerous studies to better understand the transmission of dengue fever (79).

The importance of fractional-order models lies in their ability to capture the complex dynamics and long-term dependencies within the transmission process. By incorporating fractional derivatives, these models provide a more comprehensive understanding of disease spread, which is crucial for designing effective intervention strategies. The fractional-order models can accommodate the nuanced behavior of dengue transmission, offering insights that integer-order models may overlook, thereby enhancing the accuracy and effectiveness of disease control measures.

The fractional order model has been conclusively demonstrated by a recent study to be capable of controlling the trend of complex diffusion disorder (1014). Many have emphasized various mathematical models for Dengue transmission and prevention (1519). All cited references explain the transmission process of Dengue infection from different perspectives, including dynamic analysis, evaluation of vaccination, and optimal control measures (2024). The most updated studies on Dengue with real-life data are presented in (25, 26). The mathematical description of Dengue is briefly described in Deterministic and Stochastic terms. The evolution of dengue with asymptomatic carriers using optimal control measures was investigated in (27).

Therefore, motivated by the aforementioned literature, we propose a computational framework for the dissemination of dengue at a given viremia level. We investigated whether symptom-free people were markedly more susceptible to mosquitoes than clinically symptom-positive patients. The new idea of a mathematical model to analyse the immune-boosting factor for asymptomatic infected cases and the waning immunity that cases re-infect is reported. To make practical applications and simulations easier, we utilize the Adams-Bash forth numerical scheme, which is renowned for its accuracy and stability. This choice ensures that our model reflects real-world scenarios while maintaining computational efficacy. A key highlight of this study is the incorporation of optimal control strategies into the ABC fractional order Dengue viremia model. These strategies are designed to explore how interventions, such as self-prevention and vector control, can be optimized to curtail disease spread. The analysis extends to investigating disease-free and endemic stability, providing crucial insights into the long-term behavior of the system under various control scenarios.

This article is prepared as follows: In portion 2, we review the fundamental definitions for the fractional-order operator and provide a list of mathematical properties that were used throughout the work. The dengue viral mathematical model with fractional order was presented in portion 3. Portion 4 examines the local as well as global consistency of the suggested model through the Routh-Hurwitz criteria and the Lyapunov function. An optimal control solution and discussion are present in portion 5. The final section focuses on numerical simulations and a comprehensive conclusion.

2 Fundamental results

This section introduces fractional derivation and some of its properties, which will be used in the following components.

Definition 2.1.

Consider ψ ∈ ℍ′ (0, T) and η ∈ [0, ȶ], then Atangana-Baleanu fraction component in Caputo case is

AC0𝔇ȶηψ (ȶ) = N(η)¯1- η0ȶddx  ψ(S)Nη[-η1- η(ȶ-S)]dS    (1)

The method yields a variation operator Caputo-Fabrizio that replaces

Nη[-η1- η(ȶ-S)]dS  by  N1= exp[-η1- η(ȶ-S) ]

It's noteworthy that AC0𝔇ȶη[constant] = 0. Here N(η)¯ is the typical function and it is defined as N(0)¯=1 and N(1)¯=1.  N(η)¯ depict the familiar Mittag–Leffler operator, it also reflects the exponential function generality.

Definition 2.2.

The fractional integral of ABC with order η given by

AC0𝔗ȶηψ(ȶ)= 1- ηN(η)¯ ψ(ȶ) + ηN(η) Γ(η) ¯0ȶ  ψ(S)(ȶ-S)η -1dS    (2)

Lemma 2.1.

Consider a fractional-order system

AC0𝔇ȶηx(ȶ)=f(ȶ,x),  t>t0    (3)

Where ηϵ(0, 1) in the initial case x(ȶ0).

If f(ȶ,x) fulfills the Lipschitz condition in relation to x, then system (Equation 3) exhibits a unique solution in the region [t0, +∞) × φ and φ ⊆ ℝn.

Lemma 2.2.

If x(ȶ)+ become an ongoing and attainable consequence. Then

AC0𝔇ȶη(x(ȶ)-x*-x*lnx(ȶ)x*) (1-x*x(ȶ))AC0𝔇ȶηx(ȶ)    (4)

Here t > t0, η ϵ (0, 1) and x* +.

3 Evaluation of dengue dynamics

In this section, we expand upon the previously described Dengue SIR-SI model (18) by incorporating additional factors and refining the classification of both human and mosquito populations. Our model includes viremia levels, an immune-boosting factor for asymptomatic infected cases, and clinical treatment for symptomatic infected cases.

To study the mode of spread of dengue sickness, the human species (N𝔥) is subdivided into four classes: susceptible (Ȿ𝔥), symptomatic infectious (𝔗𝔥), asymptomatic infectious (𝔗A𝔥) and recovered human populations (𝔎𝔥). We classified female mosquito species (N𝔪) into Susceptible (Ȿ𝔪) and infective mosquitoes (𝔗𝔪). A Susceptible individual among as one who is not infected and immune, infected humans are both asymptomatic and symptomatic are those who have acquired Dengue viremia from an infected mosquito populations and are all capable of spreading dengue virus to susceptible mosquitoes. Let we examines π𝔥 and π𝔪 the acquisition rates of humans and mosquitoes. The proposed model, illustrated in the flowchart, demonstrates the dengue transmission dynamics. Based on Figure 1, we developed the following differential equation.

d𝔥dȶ=π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪 -  δ𝔥𝔥+θ𝔎𝔥d𝔗shdȶ= α𝔪χ𝔥𝔥𝔗𝔪 - (τ+γ+δ𝔥)𝔗𝔥d𝔗A𝔥dȶ= α𝔪χA𝔥𝔥𝔗𝔪 - (ϱ+γ+δ𝔥)𝔗A𝔥 d𝔎𝔥dȶ= γ(𝔗𝔥+𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ𝔗𝔥+ϱ𝔗A𝔥 d𝔪dȶ=π𝔪 -α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)𝔪-δ𝔪𝔪 d𝔗𝔪dȶ= α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)𝔪-δ𝔪𝔗𝔪    (5)

Where

α𝔪- individual mosquito‘s biting rate

χ𝔥- Dissemination to human by mosquitoes, which leads to a symptomatic infectious in humans

χA𝔥- Dissemination to human by mosquitoes, which leads to a asymptomatic infectious in humans

χ𝔪 - Viremia dissemination to mosquito by human species

δ𝔥 - Human Fatality rate

τ - Symptomatic infected human treatment rate

γ - Recovering rate.

θ - Transition rate at which a recovered person becomes defenseless due to loss of immunity

ϱ − Rates of immunosuppression for asymptomatic victims

δ𝔪 - Rate of mosquito natural mortality (an average mosquito life span)

From the basic cases (h , Th, TAh,Kh,m, Tm)0.

Figure 1
www.frontiersin.org

Figure 1. The process diagram in dengue dynamics.

In this approach, the aggregate human and mosquito population ratios are provided by

N𝔥=𝔥+ 𝔗𝔥+ 𝔗A𝔥+𝔎𝔥 and  N𝔪=𝔪+ 𝔗𝔪.

In addition, the area of biologically significance for the aforementioned dengue model is indicated and presented by the covered set

Φ={𝔥 , 𝔗𝔥, 𝔗A𝔥,𝔎𝔥,𝔪, 𝔗𝔪 +6:𝔥+𝔗𝔥+ 𝔗A𝔥+𝔎𝔥N𝔥,𝔪+𝔗𝔪N𝔪} 

A fractional representation of the 𝔄𝔅ℭ model as

AC0𝔇ȶη𝔥=π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪   -δ𝔥𝔥+θ𝔎𝔥 AC0𝔇ȶη𝔗𝔥=α𝔪χ𝔥𝔥𝔗𝔪 -  (τ+γ+δ𝔥)𝔗𝔥 AC0𝔇ȶη𝔗A𝔥= α𝔪χA𝔥𝔥𝔗𝔪 - (ϱ+γ+δ𝔥)𝔗A𝔥 AC0𝔇ȶη𝔎𝔥 = γ(𝔗𝔥+𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ𝔗𝔥+ϱ 𝔗A𝔥 AC0𝔇ȶη𝔪=π𝔪 - α𝔪 χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔪 AC0𝔇ȶη𝔗𝔪= α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪     (6)

A fractional derivation of Atangana-Baleanu of order 0 < η < 1 is denoted AC0𝔇ȶη in Caputo notation.

4 Model analysis

This section examines the validity, singularity and positive variance of the solution of the SIR-SI type model. Additionally, a reliability estimate for Model (Equation 6) has also been developed.

4.1 Existence and uniqueness

Theorem 4.1.

For each non- negative initial stage (𝔥(0), 𝔗𝔥(0),  𝔗A𝔥(0), 𝔎𝔥(0),𝔪(0), 𝔗𝔪(0))+6, then there survives a oneness solution of fractional order model (Equation 6).

Proof

Let Φ={𝔥 , 𝔗𝔥,  𝔗A𝔥,𝔎𝔥,𝔪, 𝔗𝔪 +6:max(|𝔥|, |𝔗𝔥|,| 𝔗A𝔥|,|𝔎𝔥|,|𝔪|,|𝔗𝔪|)ε }.

Define a mapping

𝕄(x)=(𝕄1(x),𝕄2(x),𝕄3(x),𝕄4(x),𝕄5(x),𝕄6(x)) and

𝕄1(x)=π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪   -δ𝔥𝔥+θ𝔎𝔥 𝕄2(x)=α𝔪χ𝔥𝔥𝔗𝔪  - (τ+γ+δ𝔥)𝔗𝔥 𝕄3(x)=α𝔪χA𝔥𝔥𝔗𝔪 - (ϱ+γ+δ𝔥)𝔗A𝔥 𝕄4(x)=γ(𝔗𝔥+ 𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ 𝔗𝔥+ϱ 𝔗A𝔥 𝕄5(x)=π𝔪 -α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔪 𝕄6(x)=α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪 

Where x=(𝔥 , 𝔗𝔥,  𝔗A𝔥,𝔎𝔥,𝔪, 𝔗𝔪) Φ

For any x,x¯  Φ, we have

||𝕄(x)-𝕄(x)¯||=|𝕄1(x)-𝕄1(x)¯|+|𝕄2(x)-𝕄2(x)¯|+|𝕄3(x)-𝕄3(x)¯|+|𝕄4(x)-𝕄4(x)¯|+|𝕄5(x)-𝕄5(x)¯|+|𝕄6(x)-𝕄6(x)¯||π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪  - δ𝔥𝔥+θ𝔎𝔥-π𝔥+α𝔪(χ𝔥+χA𝔥)𝔥¯𝔗𝔪¯  +δ𝔥𝔥¯θ𝔎𝔥¯|+|α𝔪χ𝔥𝔥𝔗𝔪  - (τ+γ+δ𝔥)𝔗𝔥-α𝔪χ𝔥𝔥¯𝔗𝔪¯  +(τ+γ+δ𝔥)𝔗𝔥¯|+|α𝔪χA𝔥𝔥𝔗𝔪  - (ϱ+γ+δ𝔥) 𝔗A𝔥- α𝔪χA𝔥𝔥¯𝔗𝔪¯ +(ϱ+γ+δ𝔥) 𝔗A𝔥¯| +|γ(𝔗𝔥+ 𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ 𝔗𝔥+ϱ 𝔗A𝔥-γ(𝔗𝔥¯+ 𝔗A𝔥¯)+θ𝔎𝔥¯+δ𝔥𝔎𝔥¯-τ𝔗𝔥¯-ϱ 𝔗A𝔥¯|+|π𝔪 -α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔪-π𝔪+α𝔪χ𝔪(𝔗𝔥¯+ 𝔗A𝔥¯)𝔪¯+δ𝔪𝔪¯|+|α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪-α𝔪χ𝔪(𝔗𝔥¯+ 𝔗A𝔥¯) 𝔪¯ +δ𝔪𝔗𝔪¯|. [2α𝔪(χ𝔥+χA𝔥)P+δ𝔥]|𝔥 -𝔥¯|+(2τ+2γ+δ𝔥)|𝔗𝔥-𝔗𝔥¯|+(2ϱ+2γ+δ𝔥) | 𝔗A𝔥-  𝔗A𝔥¯|+(2θ+δ𝔥)|𝔎𝔥- 𝔎𝔥¯|+[2α𝔪(Q+R)χ𝔪+δ𝔥]|𝔪 -𝔪¯|+δ𝔪|𝔗m-𝔗m¯|K||x-x¯ ||.

Where K=max[2α𝔪(χ𝔥+χA𝔥)P+δ𝔥,2(τ+γ)+δ𝔥,2(ϱ+γ)+δ𝔥,2θ+δ𝔥,2α𝔪(Q+R)χ𝔪+δ𝔥,δ𝔪]

Basically, since 𝕄(x) satisfies the Lipschitz requirement. Model (Equation 6) has a singular solution based on Lemma 1.

4.2 Positivity solution

Since system (Equation 6) deals with mosquitoes and populace, all components of system are positive. Following is our discussion:

Theorem 4.2.

Let (Ȿ𝔥, 𝔗𝔥,  𝔗A𝔥, 𝔎𝔥, Ȿ𝔪, 𝔗𝔪) > 0 be represent the system (Equation 6) solution for the primary points  𝔥(0), 𝔗𝔥(0),  𝔗A𝔥(0),𝔎𝔥(0),𝔪(0), 𝔗𝔪(0) and represents an immutable set

Φ={𝔥 ,  𝔗𝔥,  𝔗A𝔥, 𝔎𝔥,𝔪, 𝔗𝔪 +6: N𝔥=π𝔥 δ𝔥, N𝔪=π𝔪δ𝔪}, then, all elements of the closed set

Φ is traveling in +6 space is positive invariant.

Proof

The given equation is used to construct the Lyapunov function:

𝕃(ȶ)=(𝕃1(ȶ), 𝕃2(ȶ))=(𝔥+ 𝔗𝔥+ 𝔗A𝔥+𝔎𝔥, 𝔪+𝔗𝔪) 

The function 𝕃(ȶ) satisfies

𝕃(ȶ)˙=(𝕃1(ȶ),˙ 𝕃2(ȶ),˙)=(𝔥˙+  𝔗𝔥˙+ 𝔗A𝔥˙+𝔎𝔥˙,𝔪˙+ 𝔗𝔪˙ )=(π𝔥- δ𝔥𝔥-𝔗𝔥δ𝔥- 𝔗A𝔥δ𝔥- δ𝔥𝔎𝔥,π𝔪-δ𝔪𝔪-δ𝔪𝔗𝔪) =(π𝔥- δ𝔥𝕃1,π𝔪-δ𝔪𝕃2)    (7)

Therefore, it is simple to demonstrate Equation 7 as regards:

{𝕃1(ȶ)˙=π𝔥- δ𝔥𝕃10,   for 𝕃1π𝔥 δ𝔥𝕃2(ȶ)˙=π𝔪-δ𝔪𝕃20,   for 𝕃2π𝔪δ𝔪    (8)

Inferring 𝕃(ȶ)˙0 from the above equations, which indicates that f is positively stable collection. On the other hand, by solving system (Equation 6)

0 (𝕃1(ȶ),𝕃2(ȶ))<(π𝔥 δ𝔥+𝕃1(0)e- δ𝔥t,π𝔪δ𝔪+𝕃2(0)e- δ𝔪t)

Where 𝕃1(0) and 𝕃2(0) are the primary states of 𝕃1(ȶ) and 𝕃2(ȶ) respectively. Therefore, t → ∞, 0 (𝕃1(ȶ),𝕃2(ȶ)) (π𝔥 δ𝔥,π𝔪δ𝔪) and we can conclusion that Φ is a desirable set.

This establishes the theorem.

4.3 Basic reproduction value R0

Let Cf=(𝔥* , 𝔗𝔥*, 𝔗A𝔥*,𝔎𝔥*,𝔪*, 𝔗𝔪*) be the contagious free equilibrium of Equation 6. We have Cf= (π𝔥 δ𝔥, 0, 0, π𝔪δ𝔪, 0). The algorithm of the next iteration matrix is utilized to estimate R0. Obviously, the infected compartments are 𝔗𝔥,  𝔗A𝔥 and 𝔗𝔪 as a consequence of Equation 6. There are

AC0𝔇ȶη𝔗𝔥=α𝔪χ𝔥𝔥𝔗𝔪  - (τ+γ+δ𝔥)𝔗𝔥 AC0𝔇ȶη 𝔗A𝔥= α𝔪χA𝔥𝔥𝔗𝔪  - (ϱ+γ+δ𝔥) 𝔗A𝔥 AC0𝔇ȶη𝔗𝔪= α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪     (9)

Then we derive

F=(00α𝔪χ𝔥𝔥00α𝔪χA𝔥𝔥α𝔪χ𝔪𝔪α𝔪χ𝔪𝔪0),V=(τ+γ+δ𝔥000ϱ+γ+δ𝔥000δ𝔪)

The basic reproduction value is given by

R0= ρ(FV-1)= π𝔥π𝔪χ𝔪α𝔪2(χ𝔥+χA𝔥)δ𝔥(δ𝔪)2(τ+γ+δ𝔥)(ϱ+γ+δ𝔥) 

Where ρ(FV-1) denote the spectral radius. Surmise that Cp=(𝔥**, 𝔗𝔥**, 𝔗A𝔥**, 𝔎𝔥**, 𝔪**, 𝔗𝔪**) represents the endemic equilibrium for Equation 6. So that

𝔥**=π𝔥(θ+δ𝔥)u1u2(α𝔪(χ𝔥+χA𝔥)𝔗𝔪+δ𝔥)u1u2(θ+δ𝔥)-θα𝔪𝔗𝔪u4𝔗𝔥**= α𝔪χ𝔥𝔥𝔗𝔪u1 𝔗A𝔥**=α𝔪χA𝔥𝔥𝔗𝔪u2 𝔎𝔥**=α𝔪𝔥𝔗𝔪u4(θ+δ𝔥)u1u2 𝔪**=u1u2π𝔪α𝔪2χ𝔪𝔥𝔗𝔪u3+δ𝔪u1u2 𝔗𝔪**=(θ+δ𝔥)u3α𝔪π𝔥𝔪 -δ𝔥u1u2δ𝔪(χ𝔥+χA𝔥)u5- θu4 

Where u1= τ+γ+δ𝔥, u2= ϱ+γ+δ𝔥,  u3= u1χA𝔥+ u2χ𝔥,  u4= u1χA𝔥(τ+γ)+ u2χ𝔥(ϱ+γ), and u5 = u1u2 (θ + δ𝔥) δ𝔪.

4.4 Local stability

In this part, we are covering the analysis of firmness conditions of contagious free equilibrium Cf and contagious persistence equilibrium Cp points. A steady state analysis of this equilibrium results in the following Theorem 4.3 and Theorem 4.4.

The obtained Jacobian matrix is:

=(-α𝔪(χ𝔥+χA𝔥)𝔗𝔪 -δ𝔥00θ0-α𝔪(χ𝔥+χA𝔥)𝔥α𝔪χ𝔥𝔗𝔪-(τ+γ+δ𝔥)000α𝔪χ𝔥𝔥α𝔪χA𝔥𝔗𝔪0-(ϱ+γ+δ𝔥)00α𝔪χA𝔥𝔥0τ+γϱ+γ-(θ+δ𝔥)000-α𝔪χ𝔪𝔪-α𝔪χ𝔪𝔪0-(α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)+δ𝔪)00α𝔪χ𝔪𝔪α𝔪χ𝔪𝔪0α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)-δ𝔪)    (10)

Theorem 4.3.

If R0<1, the non - contagious equilibrium C f is locally stable.

Proof

The structure (Equation 6) in the Jacobian matrix of Cf follows

(Cf)=( -δ𝔥00θ0-α𝔪(χ𝔥+χA𝔥)π𝔥δ𝔥0-(τ+γ+δ𝔥)000α𝔪χ𝔥π𝔥δ𝔥00-(ϱ+γ+δ𝔥)00α𝔪χA𝔥π𝔥δ𝔥0τ+γϱ+γ-(θ+δ𝔥)000-α𝔪χ𝔪π𝔪δ𝔪-α𝔪χ𝔪π𝔪δ𝔪0δ𝔪00α𝔪χ𝔪π𝔪δ𝔪α𝔪χ𝔪π𝔪δ𝔪00-δ𝔪)    (11)

To determine the eigenvalue from the above-described matrix det((Cf)-λ𝔗)= 0

We obtain the Eigen values λ1 = −δ𝔥, λ2 = −(τ+γ+δ𝔥), λ3 = δ𝔪, λ4 = θ+δ𝔥 and the characteristic relation is

 λ2+(ϱ+γ+δ𝔥+δ𝔪) λ+δ𝔪(τ+γ+δ𝔥)(ϱ+γ+δ𝔥)[1-R0]=0 

When R0<1, it is obvious that λ5 < 1 and λ6 < 1, all the Eigen values satisfy the condition |arg(λi)|>ηπ2, i=1,2,,6. the without contagious equilibrium Cf is locally asymptotically stable.

Theorem 4.4.

If R0>1, the equilibrium point Cp is locally stable, then system (Equation 6) has ubiquitous contagion.

Proof

Jacobian matrix evaluated in static equilibrium:

det((Cp)-λ𝔗)=0     (12)

We obtain the Eigen values are λ1 = (θ+δ𝔥), λ2=(α𝔪χ𝔪(𝔗𝔥**+𝔗A𝔥**)+ δ𝔪),

λ3=α𝔪(χ𝔥+χA𝔥)𝔗𝔪**+δ𝔥 and the characteristic relation

λ3+a1λ2+a2λ+a3=0     (13)

Where

a1=(τ+ϱ+2(γ+δ𝔥)) a2=(ϱ+γ+δ𝔥+δ𝔪)[(τ+γ+δ𝔥)-α𝔪2(χ𝔥+χA𝔥)χ𝔪𝔥**𝔪**] a3=(τ+γ+δ𝔥)[(ϱ+γ+δ𝔥)δ𝔪-α𝔪2(χ𝔥+χA𝔥)χ𝔪𝔥**𝔪**] 

By using Routh-Hurwitz Criteria (22, 23), if the following provisions are handling

a1>0,a2>0,a3>0 and a1a2-a3> 0.

Then Cp is approximately stable locally. The evidence is conclusive.

4.5 Global stability

Theorem 4.5.

If R0<1, the point of without contagious equilibrium Cf  is global stability on Φ.

Proof

Create a Lyapunov function 𝕍1(ȶ),

 𝕍1(ȶ)=(𝔥-𝔥*ln𝔥)+𝔗𝔥+ 𝔗A𝔥+𝔎𝔥+(𝔪-𝔪*ln𝔪) + 𝔗𝔪    (14)

Calculating the fractional order derivatives of 𝕍1(ȶ) in the solution direction of Equation 6, from Lemma 2, we obtain

AC0𝔇ȶη 𝕍1(ȶ)(1-𝔥*𝔥)AC0𝔇ȶη𝔥+AC0𝔇ȶη𝔗𝔥+AC0𝔇ȶη 𝔗A𝔥+AC0𝔇ȶη𝔎𝔥+(1-𝔪*𝔪)AC0𝔇ȶη𝔪+AC0𝔇ȶη𝔗𝔪 (1-𝔥*𝔥)(π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪-δ𝔥𝔥+θ𝔎𝔥)+(α𝔪χ𝔥𝔥𝔗𝔪  - (τ+γ+δ𝔥)𝔗𝔥) +(α𝔪χA𝔥𝔥𝔗𝔪  - (ϱ+γ+δ𝔥) 𝔗A𝔥) +(γ(𝔗𝔥+ 𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ 𝔗𝔥+ϱ 𝔗A𝔥) +(1-𝔪*𝔪)(π𝔪 -α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔪)+(α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪) π𝔥(1-𝔥*𝔥)+ α𝔪χ𝔥𝔥*𝔗𝔪+α𝔪χA𝔥𝔥*𝔗𝔪-δ𝔥𝔥+δ𝔥𝔥*+θ𝔎𝔥(1-𝔥*𝔥)-δ𝔥𝔗𝔥-δ𝔥𝔗A𝔥-θ𝔎𝔥-δ𝔥𝔎𝔥+π𝔪(1-𝔪*𝔪)+α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪*-δ𝔪(1-𝔪*𝔪)-δ𝔪𝔗𝔪 

Substituting the reaction of without contagious free Cf= (π𝔥 δ𝔥, 0, 0, π𝔪δ𝔪, 0), we obtain:

AC0𝔇ȶη 𝕍1(ȶ)(π𝔥+δ𝔥)(2-𝔥*𝔥-𝔥𝔥*)+(π𝔪-δ𝔪)(2-𝔪*𝔪-𝔪𝔪*)    (15)

It is clear that each term in Equation 15 must be negative. We have AC0𝔇ȶη 𝕍1(ȶ)0 due to LaSalle's invariance principle (24), the function AC0𝔇ȶη 𝕍1(ȶ) is required to be negative finite.

The maximally invariant sets 𝔥= 𝔥*, 𝔪=𝔪* which is singleton Cf=(𝔥* , 𝔗𝔥*, 𝔗A𝔥*,𝔎𝔥*,𝔪*, 𝔗𝔪*) contains the limit set for each solution. This demonstrates Cf   is globally asymptotically stable on Φ.

Theorem 4.6.

When R0>1, the positive contagious equalization level of system (Equation 6) arises and is globally stable on Φ.

Proof

Let's create a lyapunov function of the following form

 𝕍2(ȶ)=(𝔥-𝔥**ln𝔥)+(𝔗𝔥-𝔗𝔥**ln𝔗𝔥)+( 𝔗A𝔥-𝔗A𝔥**ln 𝔗A𝔥)+(𝔎𝔥-𝔎𝔥**ln𝔎𝔥)+(𝔪-𝔪**ln𝔪)+(𝔗𝔪-𝔗𝔪**ln𝔗𝔪) AC0𝔇ȶη 𝕍2(ȶ)(1-𝔥**𝔥)AC0𝔇ȶη𝔥+(1-𝔗𝔥**𝔗𝔥)AC0𝔇ȶη𝔗𝔥+(1-𝔗A𝔥** 𝔗A𝔥)AC0𝔇ȶη 𝔗A𝔥+ (1-𝔎𝔥**𝔎𝔥)AC0𝔇ȶη𝔎𝔥+(1-𝔪**𝔪)AC0𝔇ȶη𝔪+(1-𝔗𝔪**𝔗𝔪)AC0𝔇ȶη𝔗𝔪 (1-𝔥**𝔥)(π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪 -δ𝔥𝔥+θ𝔎𝔥)+(1-𝔗𝔥**𝔗𝔥)(α𝔪χ𝔥𝔥𝔗𝔪 -(τ+γ+δ𝔥)𝔗𝔥) +(1-𝔗A𝔥** 𝔗A𝔥)(α𝔪χA𝔥𝔥𝔗𝔪-(ϱ+γ+δ𝔥) 𝔗A𝔥)+(1-𝔎𝔥**𝔎𝔥)(γ(𝔗𝔥+𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ𝔗𝔥+ ϱ 𝔗A𝔥) +(1-𝔪**𝔪)(π𝔪 -α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔪)+(1-𝔗𝔪**𝔗𝔪)(α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪) π𝔥(1-𝔥**𝔥)+α𝔪(χ𝔥+χA𝔥)𝔥**𝔗𝔪 -δ𝔥𝔥(1-𝔥**𝔥)+θ𝔎𝔥𝔥**𝔥+𝔗𝔥**(τ+γ) -δ𝔥𝔗𝔥(1-𝔗𝔥**𝔗𝔥)-α𝔪𝔥(χ𝔥𝔗𝔥**𝔗𝔥+χA𝔥𝔗A𝔥** 𝔗A𝔥)𝔗𝔪+(ϱ+γ)𝔗A𝔥**-δ𝔥 𝔗A𝔥(1-𝔗A𝔥** 𝔗A𝔥)-γ(𝔗𝔥+𝔗A𝔥)𝔎𝔥**𝔎𝔥+θ𝔎𝔥**-δ𝔥𝔎𝔥(1-𝔎𝔥**𝔎𝔥)+(τ𝔗𝔥+ϱ 𝔗A𝔥)𝔎𝔥**𝔎𝔥+π𝔪(1-𝔪**𝔪)-δ𝔪(1-𝔪**𝔪)-δ𝔪(1-𝔗𝔪**𝔗𝔪)+α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)(𝔪**+𝔪𝔗𝔪**𝔗𝔪) AC0𝔇ȶη 𝕍2(ȶ)(π𝔥-δ𝔥+θ𝔎𝔥)(2-𝔥**𝔥-𝔥𝔥**)+(τ+γ-δ𝔥)(2-𝔗𝔥**𝔗𝔥-𝔗𝔥𝔗𝔥**)+(ϱ+γ-δ𝔥) (2-𝔗A𝔥** 𝔗A𝔥- 𝔗A𝔥𝔗A𝔥**)+(γ+δ𝔥-θ)(2-𝔎𝔥**𝔎𝔥-𝔎𝔥𝔎𝔥**)+(π𝔪-δ𝔪)(2-𝔪**𝔪𝔪𝔪**)+δ𝔪(2-𝔗𝔪**𝔗𝔪-𝔗𝔪𝔗𝔪**)     (16)

Hence, the condition in Equation 16 ensures

AC0𝔇ȶη 𝕍2(ȶ)0 for all (𝔥** , 𝔗𝔥**, 𝔗A𝔥**,𝔎𝔥**,S𝔪**, 𝔗𝔪**)Φ   and strict the quality holds for S𝔥=𝔥=𝔥**,𝔗S𝔥= 𝔗S𝔥**, 𝔗A𝔥= 𝔗A𝔥**,𝔎𝔥= 𝔎𝔥**,𝔪=𝔪** and 𝔗𝔪=𝔗𝔪**. therefore the equilibrium point Cp becomes globally stable on Φ.

5 Optimum control approach

In this portion, we will discuss how to optimize the problem and analyze the performance of the control function. Consolidation of optimal controlling problem a dynamics of control system can be described as system (Equation 6).

AC0𝔇ȶη𝔥=π𝔥 -α𝔪(χ𝔥+χA𝔥)S𝔥𝔗𝔪 - δ𝔥S𝔥+θ𝔎𝔥-𝕌1(ȶ)S𝔥 AC0𝔇ȶη𝔗𝔥=α𝔪χ𝔥S𝔥𝔗𝔪  -(τ+γ+δ𝔥)𝔗S𝔥 AC0𝔇ȶη𝔗A𝔥= α𝔪χA𝔥𝔥𝔗𝔪  -(ϱ+γ+δ𝔥)𝔗A𝔥 AC0𝔇ȶη𝔪=π𝔪-α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)𝔪-δ𝔪𝔪-𝕌2(ȶ)𝔪 AC0𝔇ȶη𝔗𝔪= α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)𝔪-δ𝔪𝔗𝔪-𝕌2(ȶ)𝔗𝔪    (17)

Where

𝕌1− Self-precaution (long sleeved pants and shorts, increase immune system, consultation at

the neatest health care) minimizes the susceptible individuals.

𝕌2− Use of chemical insecticide sprays destroying the susceptible and infected mosquito cases

The optimal solution being minimized could be expressed as:

(𝕌1,𝕌2)=0ȶf(a𝔥+b𝔗𝔥+c𝔗A𝔥+d𝔪+e𝔗𝔪+f𝕌12+g𝕌22)dȶ    (18)

To reduce the cost of two controls 𝕌1 and 𝕌2 the objective is reduced  𝔥 , 𝔗S𝔥, 𝔗A𝔥 and S𝔪, 𝔗𝔪.

Therefore, we need to obtain optimal controls 𝕌1* and 𝕌2*

(𝕌1*,𝕌2*)=min 𝕌1,𝕌2{(𝕌1,𝕌2)|𝕌1,𝕌2Φ}    (19)

A set of constraints Φ={(𝕌1, 𝕌2)|𝕌i :[0,ȶf][0,) lebesque quantifiable i=1,2 }.

The expense of minimizing 𝔥, 𝔗𝔥, 𝔗A𝔥, Ȿ𝔪 and 𝔗𝔪 is represented by the term a𝔥, b𝔗𝔥, c𝔗A𝔥, d𝔪 and e𝔗𝔪 respectively. Likewise, f𝕌12,g𝕌22 represents the cost for controls 𝕌1, 𝕌2. The most prevalent PMP can be used to find the adequacy condition required for the control system to be satisfied. Equations 17, 19 can be transformed into the following point-wise Hamiltonian ℍ for (𝕌1, 𝕌2) regression problem using the aforesaid principle.

={a𝔥+b𝔗S𝔥+c𝔗A𝔥+dS𝔪+e𝔗𝔪+f𝕌12+g𝕌22}+λ𝔥{π𝔥-α𝔪(χS𝔥+χA𝔥)𝔥𝔗𝔪-δ𝔥𝔥+θ𝔎𝔥-𝕌1(ȶ)𝔥}+ λ𝔗𝔥{α𝔪χ𝔥S𝔥𝔗𝔪-(τ+γ+δ𝔥)𝔗S𝔥}+λ𝔗A𝔥{α𝔪χA𝔥𝔥𝔗𝔪  -(ϱ+γ+δ𝔥)𝔗A𝔥}+ λ𝔪{π𝔪-α𝔪χ𝔪(𝔗S𝔥+𝔗A𝔥)𝔪-δ𝔪S𝔪-𝕌2(ȶ)S𝔪}+λ𝔗𝔪{α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)𝔪-δ𝔪𝔗𝔪-𝕌2(ȶ)𝔗𝔪}     (20)

Where λ𝔥,λ𝔗𝔥, λ𝔗A𝔥, λSm and λ𝔗𝔪 are the ad-joint variable or co-state variable.

dλ𝔥dȶ=𝔥=a+λ𝔥{-α𝔪(χS𝔥+χA𝔥)𝔗𝔪-δ𝔥}-(λ𝔗𝔥+λ𝔗A𝔥)α𝔪(χ𝔥+χA𝔥)𝔗𝔪 dλ𝔗𝔥dȶ=𝔗𝔥=b-λ𝔥𝕌1(ȶ)+λ𝔗𝔥{-(τ+γ+δ𝔥)}+λ𝔗𝔪α𝔪χ𝔪𝔪 dλ𝔗A𝔥dȶ=𝔗A𝔥=c-λ𝔥𝕌1(ȶ)+λ𝔗A𝔥{-(ϱ+γ+δ𝔥)}+λ𝔗𝔪α𝔪χ𝔪𝔪dλ𝔪dȶ=𝔪=d+λ𝔪{-α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)-δ𝔪-𝕌2(ȶ)}+λ𝔗𝔪(α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)) dλ𝔗𝔪dȶ=𝔗𝔪=e+λ𝔗𝔪{-δ𝔪-𝕌2(ȶ)}-(λ𝔗𝔥+λ𝔗A𝔥)α𝔪(χ𝔥+χA𝔥)S𝔥+λS𝔥{-α𝔪(χ𝔥+χA𝔥)𝔥 }    (21)

The conditions for transversality are

λ𝔥(ȶf)=λ𝔗𝔥(ȶ)=λ𝔗A𝔥(ȶf)= λ𝔪(ȶf)=λ𝔗𝔪(ȶf)= 0.

For 0<𝕌i<1, i=1 ,2. From the interior of controls, we have:

𝕌1=2f𝕌1-λ𝔥(𝔗S𝔥+𝔗A𝔥) 𝕌2=2g𝕌2-λ𝔪𝔪-λ𝔗𝔪𝔗𝔪     (22)

From where:

𝕌1= λ𝔥(𝔗𝔥+𝔗A𝔥)2f 𝕌2=λ𝔪𝔪+λ𝔗𝔪𝔗𝔪2g    (23)

5.1 Utilization of optimal solutions

Theorem 5.1. (𝕌1*,𝕌2*) is a control factor can reduce over 𝕌 provided by

𝕌1*=max {0,min{1,12fλ𝔥(𝔗𝔥+𝔗A𝔥)}} 𝕌2*=max{0,min{1,12gλ𝔪𝔪+λ𝔗𝔪𝔗𝔪}}     (24)

Where λ𝔥,λ𝔗𝔥, λ𝔗A𝔥, λ𝔪 and λ𝔗𝔪 are co-state variable that satisfy the condition (Equations 1724) in addition, the transversality characteristic that follows

λ𝔥(ȶf)=λ𝔗𝔥(ȶf)=λ𝔗A𝔥(ȶf)= λ𝔪(ȶf)=λ𝔗𝔪(ȶf)=0. 
𝕌1*={0                                        if  𝕌10, 𝕌1                              if 0<𝕌1<1,1                                          if 𝕌10.

And

𝕌2*={0                                        if  𝕌20 ,𝕌2                               if 0<𝕌2<1,1                                           if 𝕌20.    (25)

Proof

To demonstrate the survival of optimal control solutions, the configuration of the Lipschitz criterion of the system and the convexity of the integral in Equation 21 are related and state variable that constrains 𝕌1 and 𝕌2 to the boundary of the state solution. So we employ PMP and get the following:

AC0𝔇ȶηλ𝔥(ȶ)=𝔥;AC0𝔇ȶηλ𝔗𝔥(ȶ)=𝔗𝔥;AC0𝔇ȶηλ𝔗A𝔥(ȶ)=𝔗A𝔥; AC0𝔇ȶηλ𝔪(ȶ)=𝔪;AC0𝔇ȶηλ𝔗𝔪(ȶ)=𝔗𝔪;    (26)

with,

λ𝔥(ȶf)=λ𝔗𝔥(ȶf)=λ𝔗A𝔥(ȶf)= λ𝔪(ȶf)=λ𝔗𝔪(ȶf)= 0.

The Hamilton can be differentiated with regard to achieve the conditional optimum:

𝕌1=0,𝕌2 =0.     (27)

The ad-joint system (Equations 20, 21) derived from Equation 17, the optimum system (Equation 23) is accessible from Equation 24. The optimal method is the constrained system (Equation 17) and its initial state is ad-joint the system includes (Equation 20), and condition for intersection.

6 Adams-Bash forth method

Here, we formulate the system of Equation 6 a recently invented numerical approach, the Adams-Bash forth method (24). The framework (Equation 6) can be used to test the essential theorem from fractional calculus,

𝔥(ȶ) =𝔥(0)+1-ηABC(η)𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))+ ηABC(η)η0ȶ𝕂1(ϖ, 𝔥(ϖ),𝔗S𝔥(ϖ),𝔗A𝔥(ϖ),𝔎𝔥(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ    (28)
𝔗𝔥(ȶ)=𝔗𝔥(0)+1-ηABC(η)𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))+ ηABC(η)η0ȶ𝕂2(ϖ, 𝔥(ϖ),𝔗𝔥(ϖ),  𝔗A𝔥(ϖ),𝔎𝔥(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ    (29)
 𝔗A𝔥(ȶ) = 𝔗A𝔥(0)+1-ηABC(η)𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))+ηABC(η)η0ȶ𝕂3(ϖ, 𝔥(ϖ),Th(ϖ),  TAh(ϖ),Kh(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ    (30)
𝔎𝔥(ȶ) = 𝔎𝔥(0)+1-ηABC(η)𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ), 𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))+ ηABC(η)η0ȶ𝕂4(ϖ, 𝔥(ϖ),𝔗S𝔥(ϖ),𝔗A𝔥(ϖ),𝔎𝔥(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ    (31)
𝔪(ȶ) = 𝔪(0)+1-ηABC(η)𝕂5(ȶ, 𝔥(ȶ),𝔗S𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))+ ηABC(η)η0ȶ𝕂5(ϖ, 𝔥(ϖ),𝔗S𝔥(ϖ), 𝔗A𝔥(ϖ),𝔎𝔥(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ    (32)
𝔗𝔪(ȶ) = 𝔗𝔪(0)+1-ηABC(η)𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ), 𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))+ ηABC(η)η0ȶ𝕂6(ϖ, 𝔥(ϖ),𝔗𝔥(ϖ), 𝔗A𝔥(ϖ),𝔎𝔥(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ     (33)

Where,

{𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))    =π𝔥 -α𝔪(χ𝔥+χA𝔥)S𝔥𝔗𝔪 - δ𝔥𝔥+θ𝔎𝔥𝕂2(ȶ, S𝔥(ȶ),𝔗S𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), S𝔪(ȶ),𝔗𝔪(ȶ))    =α𝔪χ𝔥𝔥𝔗𝔪  -(τ+γ+δ𝔥)𝔗S𝔥𝕂3(ȶ, S𝔥(ȶ),𝔗S𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), S𝔪(ȶ),𝔗𝔪(ȶ))    =α𝔪χA𝔥𝔥𝔗𝔪  -(ϱ+γ+δ𝔥) 𝔗A𝔥𝕂4(ȶ, S𝔥(ȶ),𝔗S𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), S𝔪(ȶ),𝔗𝔪(ȶ))    =γ(𝔗𝔥+ 𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ𝔗𝔥+ϱ 𝔗A𝔥𝕂5(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))    =π𝔪-α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-Ω𝔪-δ𝔪𝔪𝕂6(ȶ, S𝔥(ȶ),𝔗S𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), S𝔪(ȶ),𝔗𝔪(ȶ))    =α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)m-(Ω+δ𝔪)𝔗𝔪    (34)

The following structure is obtained at time t𝔫+ 1,

𝔥(ȶ𝔫+1) =𝔥(0)+1-ηABC(η)𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (35)
𝔗𝔥(ȶ𝔫+1) =𝔗𝔥(0)+1-ηABC(η)𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (36)
𝔗A𝔥(ȶ𝔫+1) = 𝔗A𝔥(0)+1-ηABC(η)𝕂3(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (37)
𝔎𝔥(ȶ𝔫+1) = 𝔎𝔥(0)+1-ηABC(η)𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (38)
𝔪(ȶ𝔫+1) = 𝔪(0)+1-ηABC(η)𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂5(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (39)
𝔗𝔪(ȶ𝔫+1) = 𝔗𝔪(0)+1-ηABC(η)𝕂6(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (40)

While, at t𝔫 we have

𝔥(ȶ𝔫) =S𝔥(0)+1-ηABC(η)𝕂1(ȶ𝔫-1,  𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)+ηABC(η)η0ȶ𝔫𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (41)
𝔗𝔥(ȶ𝔫) =𝔗𝔥(0)+1-ηABC(η)𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1) +ηABC(η)η0ȶ𝔫𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (42)
𝔗A𝔥(ȶ𝔫) = 𝔗A𝔥(0)+1-ηABC(η)𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1, 𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)+ηABC(η)η0ȶ𝔫𝕂3(ȶ, 𝔥(ȶ0),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (43)
𝔎𝔥(ȶ𝔫) = 𝔎𝔥(0)+1-ηABC(η)𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1,𝔪𝔫-1,𝔗𝔪𝔫-1) +ηABC(η)η0ȶ𝔫𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (44)
𝔪(ȶ𝔫) = 𝔪(0)+1-ηABC(η)𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1) +ηABC(η)η0ȶ𝔫𝕂5(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (45)
𝔗𝔪(ȶ𝔫) =𝔗𝔪(0)+1-ηABC(η)𝕂6(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1) +ηABC(η)η0ȶ𝔫𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (46)

By subtracting Ȿ𝔥𝔫) from Ȿ𝔥𝔫+1), 𝔗𝔥𝔫) from 𝔗𝔥𝔫+1),  𝔗A𝔥(ȶ𝔫) from  𝔗A𝔥(ȶ𝔫+1), 𝔎𝔥𝔫) from 𝔎𝔥𝔫+1), Ȿ𝔪𝔫) from S𝔪𝔫+1) and 𝔗𝔪𝔫) from 𝔗𝔪𝔫+1), we get the following

𝔥(ȶ𝔫+1)=S𝔥(ȶ𝔫)+1-ηABC(η)[𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+ ηABC(η)η0ȶ𝔫+1𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- ηABC(η)η0ȶ𝔫𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (47)
𝔗𝔥(ȶ𝔫+1)=𝔗𝔥(ȶ𝔫)+1-ηABC(η)[𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] +ηABC(η)η0ȶ𝔫+1𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- ηABC(η)η0ȶ𝔫𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (48)
𝔗A𝔥(ȶ𝔫+1)= 𝔗A𝔥(ȶ𝔫)+1-ηABC(η)[𝕂3(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+ ηABC(η)η0ȶ𝔫+1𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- ηABC(η)η0ȶ𝔫𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (49)
𝔎𝔥(ȶ𝔫+1)=𝔎𝔥(ȶ𝔫)+1-ηABC(η)[𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] +ηABC(η)η0ȶ𝔫+1𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- +ηABC(η)η0ȶ𝔫𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (50)
𝔪(ȶ𝔫+1)=S𝔪(ȶ𝔫)+1-ηABC(η)[𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+ ηABC(η)η0ȶ𝔫+1𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- +ηABC(η)η0ȶ𝔫𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (51)
𝔗𝔪(ȶ𝔫+1)=𝔗𝔪(ȶ𝔫)+1-ηABC(η)[𝕂6(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂6(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+ ηABC(η)η0ȶ𝔫+1𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- +ηABC(η)η0ȶ𝔫𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (52)

The Equations 4752 become

𝔥(ȶ𝔫+1)=S𝔥(ȶ𝔫)+1-ηABC(η)[𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫,𝔪𝔫,𝔗𝔪𝔫(-𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+𝔸η,11-𝔸η,21    (53)
𝔗𝔥(ȶ𝔫+1)=𝔗𝔥(ȶ𝔫)+1-ηABC(η)[𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫,𝔪𝔫,𝔗𝔪𝔫(-𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1,𝔪𝔫-1,𝔗𝔪𝔫-1(]+𝔸η,12-𝔸η,22    (54)
𝔗A𝔥(ȶ𝔫+1)+𝔗A𝔥(ȶ𝔫)+1-ηABC(η)[𝕂3(ȶ𝔫,𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+𝔸η,13- 𝔸η,23    (55)
𝔎𝔥(ȶ𝔫+1)=𝔎𝔥(ȶ𝔫)+1-ηABC(η)[𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+𝔸η,14-𝔸η,24     (56)
𝔪(ȶ𝔫+1)=S𝔪(ȶ𝔫)+1-ηABC(η)[𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+𝔸η,15-𝔸η,25     (57)
𝔗𝔪(ȶ𝔫+1)=𝔗𝔪(ȶ𝔫)+1-ηABC(η)[𝕂6(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂6(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+𝔸η,16- 𝔸η,26    (58)

Where

𝔸η,11=ηABC(η)η0ȶ𝔫+1𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (59)
𝔸η,12=ηABC(η)η 0ȶ𝔫+1𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (60)
𝔸η,13=ηABC(η)η0ȶ𝔫+1𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (61)
𝔸η,14=ηABC(η)η0ȶ𝔫+1𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (62)
𝔸η,15=ηABC(η)η0ȶ𝔫+1𝕂5(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (63)
𝔸η,16=ηABC(η)η0ȶ𝔫+1𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (64)

and

𝔸η,21=ηABC(η)η0ȶ𝔫𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(