ORIGINAL RESEARCH article
Front. Public Health
Sec. Environmental Health and Exposome
Volume 13 - 2025 | doi: 10.3389/fpubh.2025.1593114
Microbial community structure and resistome dynamics on elevator buttons in response to surface disinfection practices
Provisionally accepted- Nanjing Medical University, Nanjing, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Disinfectants have been extensively used in public environments since the COVID-19 outbreak to help control the spread of the virus. This study aims to investigate whether disinfectant use influences the structure of bacterial communities and contributes to bacterial resistance to disinfectants and antibiotics. Methods: Using molecular biology techniques—including metagenomic sequencing and quantitative PCR (qPCR)—we analyzed the bacterial communities on elevator button surfaces from two tertiary hospitals, one infectious disease hospital, two quarantine hotels (designated for COVID-19 control), and five general hotels in Nanjing, Jiangsu Province, during the COVID-19 pandemic. We focused on detecting disinfectant resistance genes (DRGs), antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs). Results: Significant differences were observed in the bacterial community structures on elevator button surfaces across the four types of environments. Quarantine hotels, which implemented the most frequent disinfection protocols, exhibited distinct bacterial profiles at the phylum, genus, and species levels. Both α-diversity (within-sample diversity) and β-diversity (between-sample diversity) were lower and more distinct in quarantine hotels compared to the other environments. The abundance of DRGs, ARGs, and MGEs was also significantly higher on elevator button surfaces in quarantine hotels. Notably, antibiotic-resistant bacteria (ARBs), including Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, were detected in all four settings. Conclusion: The structure of bacterial communities on elevator button surfaces varies across different environments, likely influenced by the frequency of disinfectant use. Increased resistance gene abundance in quarantine hotels suggests that disinfection practices may contribute to the selection and spread of resistant bacteria. Enhanced monitoring of disinfection effectiveness and refinement of protocols in high-risk environments such as hospitals and hotels are essential to limit the spread of resistant pathogens.
Keywords: Disinfectant, elevator buttons, antibiotic resistance, Disinfectant resistance, Metagenomics, mobile genetic elements
Received: 13 Mar 2025; Accepted: 14 May 2025.
Copyright: © 2025 叶, Peng, Wang, Fang, Zhu, Huang, Huang, Cheng, Ni, Qian, Wu and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: 珊珊 叶, Nanjing Medical University, Nanjing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.