ORIGINAL RESEARCH article

Front. Therm. Eng.

Sec. Thermal System Design

Volume 5 - 2025 | doi: 10.3389/fther.2025.1561295

This article is part of the Research TopicAdvancements in Thermal Energy Systems: Bridging Traditional and Emerging TechnologiesView all articles

Experimental Analysis of a Latent Heat Thermal Energy Storage Unit Enhanced by Branched Fins

Provisionally accepted
  • 1Gannon University, Erie, Pennsylvania, United States
  • 2Widener University, Chester, United States

The final, formatted version of the article will be published soon.

The global shift towards renewable energy to replace fossil fuels has led to exploring thermal energy storage techniques employing phase change materials (PCM), known as latent heat thermal energy storage (LHTES). Renewable energy sources such as solar and wind have limitations due to their unpredictable nature and thus require adequate storage during times of intermittency. PCMs offer a high energy storage density, however, their thermal performance is limited by their low thermal conductivity. This is leading researchers to investigate passive heat transfer enhancement techniques, such as nanoparticle dispersion, porous matrices, heat pipes, and fins, to improve heat transfer within PCMs. Recent studies have primarily focused on the numerical analysis of branched fins, leaving a significant gap in experimental validation. This study addresses this gap by providing a comprehensive experimental evaluation of the thermal performance of a LHTES system enhanced by branched fins, The performance of various fin configurations is compared during both charging and discharging processes. The present study takes a novel approach in comparing performance of radial fins, Y-fins, and snowflake fins in two sets of cases: four-fin and six-fin arrangements, which are compared to a baseline of a zero-fin configuration. All four-fin arrangements contain the same volume of copper, and all six-fin arrangements contain more copper than the four-fin arrangements. The fin configurations are compared based on charging and discharging times and the system energy response. The comparisons indicate that all branched fins configurations resulted in significant reductions in charging and discharging times compared to the benchmark. For four-fin arrangements, radial fins show a decrease of 81.52% and 63.45%, Y-fins show a reduction of 85.97% and 73.64% and snowflake fins show a reduction of 86.3% and 73.2% in charging and discharging times, respectively. For six-fin arrangements, radial fins show a reduction of 89.76% and 76.87%, Y-fins show a reduction of 91.63% and 83.03%, and snowflake fins show a reduction of 91.61% and 86.14% reduction in charging and discharging times, respectively.

Keywords: latent heat thermal energy storage, Branched fins, Radial fins, Y fins, Snowflake fins, Shell and tube heat exchanger, Experimental testing, phase change material

Received: 15 Jan 2025; Accepted: 14 May 2025.

Copyright: © 2025 Pandiri, Murphy, Fouladi and Tiari. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Saeed Tiari, Widener University, Chester, United States

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.