Skip to main content

EDITORIAL article

Front. Phys., 15 February 2023
Sec. Nuclear Physics​
This article is part of the Research Topic Nuclear Structure and Dynamics with Stable and Unstable Beams View all 7 articles

Editorial: Nuclear structure and dynamics with stable and unstable beams

  • 1Dipartimento Di Fisica e Astronomia, Università Di Catania and INFN–Sezione Di Catania, Catania, Italy
  • 2Dipartimento Di Fisica “Ettore Pancini”, Università Degli Studi Di Napoli “Federico II” and INFN–Sezione Di Napoli, Napoli, Italy
  • 3Instituto De Física, Universidade De São Paulo, São Paulo, Brazil

1 Nuclear reactions: A fundamental tool in nuclear physics

Since the beginning of nuclear physics, nuclear reactions appeared as a unique tool for the study of the most important nuclear properties. All the currently adopted classes of nuclear models (e.g., shell-, liquid-drop, Fermi gas, collective, cluster models) have been developed and/or finely tuned thanks to the large amount of data obtained in experiments of nuclear reactions.

For example, reactions between light nuclei produce a mine of information on the structure of ground and excited states of such few-body systems. In recent times, many of such investigations have been focused on the study of α-clustering rearrangement both in self- and non-self conjugate nuclei (see, e.g., [14]), a peculiar phenomenon that is linked to the presence of long-range correlations in nuclear forces. Nuclear reactions involving α-clustered systems are also a powerful tool to explore the competition between low-energy reaction mechanisms, such as elastic scattering and α-transfer Lichtenthäler Filho et al. [5]; Lépine-Szily et al. [6]. In nuclear astrophysics, high-precision measurements of reaction cross sections at low energy can be fundamental to understand particular aspects of stellar nucleosynthesis (e.g., the hotly debated 19F production and destruction mechanisms in AGB stars [710] or in connection with the evolution of POP III stars [11], or the fate of type II core-collapse supernovae and the resulting elemental abundances [12]). Furthermore, nuclear reactions induced by weakly bound projectiles as deuterons and/or 3He are still of paramount importance for the understanding of shell-model predictions in proton-rich or neutron-rich nuclei, even for particularly exotic nuclear systems [13,14]. In this respect, the availability of new, unstable, neutron rich beams triggered the development of new cryogenic d or 3He target to be used in transfer experiments in inverse kinematics [15]. Another important tool to study the structure of excited states of nuclei far from the stability line is linked to the analysis of reactions induced by weakly bound 6,7Li 10,11B projectiles [1629]. In this framework, fully optimized optical model potentials (as the Sao Paulo one [3033]) can be profitably used in the framework of DWBA or CC calculations, with the aim of extracting spectroscopic information from reaction cross section data [34,35].

Nuclear clustering plays a role also when moving to heavy-ion collisions. At energies around 5–10 MeV/nucleon, the typical fusion-evaporation or fusion-fission scenarios [36,37] are gradually replaced by more complex mechanisms [38,39], with the presence of several fragments [40,41], often accompanied by nucleons or light clusters emitted in the pre-equilibrium phase [4244]. This complex scenario, occurring in the domain of Fermi energies, can be explored thanks to high-performance multi-detector arrays as, for example, INDRA [4547], CHIMERA [4850], HiRA [5153], LASSA [54], FAZIA [5557], often coupled with high angular resolution hodoscopes as FARCOS [58,59] or OSCAR [60] to better sample specific region of the phase space. In this framework, it has been demonstrated the occurrence of spinodal decomposition of the system formed in central heavy-ion collisions at Fermi energies [61] due to mechanical instabilities; furthermore, the highly excited systems formed at different impact parameters can be characterized with thermometric [62] and calorimetric [63,64] measurements that can be useful also to unveil the nature of the phase transition from a liquid-like to a gas-like phase occurring in nuclear matter [6567]. It is also possible that condensation phenomena could influence the yields of the observed light clusters [68]. In this context, also the neutron richness of the colliding system can play a strong role on the dynamical evolution and the fragment formation [6973], and the comparison of data with several reaction models, based both on transport equations [7479] or molecular dynamics approaches [80,81] is important to determine the isospin dependence of the equation of state of nuclear matter. This point is of paramount importance also for the description of the structure and stability of neutron stars.

2 A brief overview of the Research Topic

This Research Topic presents a collection of results that cover a broad domain of nucleus-nucleus collisions with stable and unstable ion beams, helping to push the frontiers of nuclear reactions studies towards new applications. One of the topics highlighted in the present collection is that of the development of new radioactive ion beam facilities. Martorana et al. report on the status of the FRAISE facility of INFN-LNS (Catania, Italy), discussing the use of recent Silicon Carbide detector technology for the diagnosis and tagging of high-intensity radioactive ion beams. These studies are particularly relevant because the development of radioactive ion beams in international facilities worldwide gives now the opportunity to extend our understanding of nuclear systems even far away from the stability, where exotic structure phenomena often occur.

The investigation of the spectroscopy of neutron-rich nuclei is a topic at the frontiers of contemporary nuclear physics. In this framework, improving the detection of neutrons, which are abundantly emitted in collisions involving neutron-rich systems, is fundamental to probe the structure of neutron-rich systems and the underlying collision dynamics. Advancements in neutron detection are reported by Pagano et al., where the authors discuss the development of the recent NArCoS array. The study of neutron-rich systems is also key to understand α-clustering and the occurrence of molecular structures in light systems. Possible new applications with NArCoS and a detailed plan to investigate clustering and molecular states at FRAISE are presented in Gnoffo et al., Charged-particle spectroscopy techniques are instead used by Vukman et al. to investigate cluster structures in 12Be, exploiting radioactive ion beams available at TRIUMF (Vancouver, Canada).

The investigation of reaction mechanisms at low and intermediate energies is another key topic explored in the present Research Topic. At energies above the Coulomb barrier, multi-nucleon transfer phenomena gain importance and are a powerful tool to investigate shell-model aspects and nucleon-nucleon correlations in mid- and heavy-mass systems. Mijatović et al. report a review of multinucleon transfer reactions and recent results from the PRISMA collaboration. Finally, the present collection extends also to higher energy, towards the Fermi domain. In particular, Pagano et al. discuss the importance of investigating peripheral heavy-ion collisions in the Fermi energy domain, where the formation of a dilute neck of nuclear matter can be observed. From a detailed fragment-fragment correlation analysis it is possible to determine the time-scale of fragment emission, a fundamental information to understand the dynamics of heavy-ion reactions at intermediate energies.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Bishop J, Kokalova T, Freer M, Acosta L, Assie M, Bailey S, et al. Experimental investigation of a condensation in light nuclei. Phys Rev C (2019) 100:034320. doi:10.1103/physrevc.100.034320

CrossRef Full Text | Google Scholar

2. Dell’Aquila D, Lombardo I, Acosta L, Andolina R, Auditore L, Cardella G, et al. New experimental investigation of the structure of be 10 and c 16 by means of intermediate-energy sequential breakup. Phys Rev C (2016) 93:024611. doi:10.1103/physrevc.93.024611

CrossRef Full Text | Google Scholar

3. Lombardo I, Dell'Aquila D, Spadaccini G, Verde G, Vigilante M. Spectroscopy of c 13 above the a threshold with a+ be 9 reactions at low energies. Phys Rev C (2018) 97:034320. doi:10.1103/physrevc.97.034320

CrossRef Full Text | Google Scholar

4. Cardella G, Favela F, Martorana NS, Acosta L, Camaiani A, De Filippo E, et al. Investigating gamma -ray decay of excited c 12 levels with a multifold coincidence analysis. Phys Rev C (2021) 104:064315. doi:10.1103/physrevc.104.064315

CrossRef Full Text | Google Scholar

5. Lichtenthäler Filho R, Lepine-Szily A, Villari ACC, Filho OP. Effect of a-transfer polarization potential in the 24mg+16o system. Phys Rev C (1989) 39:884–90. doi:10.1103/physrevc.39.884

CrossRef Full Text | Google Scholar

6. Lépine-Szily A, Lichtenthaler Filho R, Obuti MM, de Oliveira JM, Portezan Filho O, Sciani W, et al. Structures in the excitation function of 24mg(16o,20ne)20ne and a nonresonant description of these structures. Phys Rev C (1989) 40:681–4. doi:10.1103/physrevc.40.681

CrossRef Full Text | Google Scholar

7. Lombardo I, Dell'Aquila D, Campajola L, Rosato E, Spadaccini G, Vigilante M. Analysis of the 19f(p, a0)16O reaction at low energies and the spectroscopy of 20Ne. J Phys G: Nucl Part Phys (2013) 40:1251102. doi:10.1088/0954-3899/40/12/125102

CrossRef Full Text | Google Scholar

8. Lombardo I, Dell'Aquila D, Di Leva A, Indelicato I, La Cognata M, La Commara M, et al. Toward a reassessment of the 19f(p, a0)16o reaction rate at astrophysical temperatures. Phys Lett B (2015) 748:178–82. doi:10.1016/j.physletb.2015.06.073

CrossRef Full Text | Google Scholar

9. He JJ, Lombardo I, Dell’Aquila D, Xu Y, Zhang LY, Liu WP. Thermonuclear 19F(p, α0) 16O reaction rate. Chin Phys C (2018) 42:015001. doi:10.1088/1674-1137/42/1/015001

CrossRef Full Text | Google Scholar

10. Lombardo I, Dell'Aquila D, He JJ, Spadaccini G, Vigilante M. New analysis of p+ f 19 reactions at low energies and the spectroscopy of natural-parity states in ne 20. Phys Rev C (2019) 100:044307. doi:10.1103/physrevc.100.044307

CrossRef Full Text | Google Scholar

11. De Boer RJ, Clarkson O, Couture AJ, Gorres J, Herwig F, Lombardo I, et al. F 19 (p,gamma)20ne and f 19 (p,a) o 16 reaction rates and their effect on calcium production in population iii stars from hot cno breakout. Phys Rev C (2021) 103:055815. doi:10.1103/physrevc.103.055815)

CrossRef Full Text | Google Scholar

12 Zhang LY, He JJ, Wanajo S, Dell'Aquila D, Kubono S, Zhao G. New thermonuclear 10B(α,p)13C rate and its astrophysical implication in the nup-process. Astrophys Jour (2018) 868:24s. doi:10.3847/1538-4357/aae479

CrossRef Full Text | Google Scholar

13. Al Kalanee T, Gibelin J, Roussel-Chomaz P, Keeley N, Beaumel D, Blumenfeld Y, et al. Structure of unbound neutron-rich 9he studied using single-neutron transfer. Phys Rev C (2013) 88:034301. doi:10.1103/physrevc.88.034301

CrossRef Full Text | Google Scholar

14. Moro AM, Casal J, Gomez-Ramos M. Investigating the 10Li continuum through 9Li(d,p)10Li reactionsp)10li reactions. Phys Lett B (2019) 793:13–8. doi:10.1016/j.physletb.2019.04.015

CrossRef Full Text | Google Scholar

15. Sedlak M, Gottardo A, Goasduff A, Pengo R, Zanon I, Crespi F, et al. The cryogenic targets for direct reactions (ctadir) project. Nuov Cim C (2022) 45:108. doi:10.1393/ncc/i2022-22108-6

CrossRef Full Text | Google Scholar

16. Young BM, Benenson W, Kelley J, Orr N, Pfaff R, Sherrill B, et al. Low-lying structure of 10li in the reaction 11b(7li,8b)10li. Phys Rev C (1994) 49:279–83. doi:10.1103/physrevc.49.279

CrossRef Full Text | Google Scholar

17. Chen L, Blank B, Brown B, Chartier M, Galonsky A, Hansen P, et al. Evidence for an l=0 ground state in 9he. Phys Lett B (2001) 505:21–6. doi:10.1016/s0370-2693(01)00313-6

CrossRef Full Text | Google Scholar

18. Soić N, Blagus S, Bogovac M, Fazinić S, Lattuada M, Milin M, et al. 6He + α clustering in 10Be. Europhys Lett (1996) 34:7. doi:10.1209/epl/i1996-00407-y

CrossRef Full Text | Google Scholar

19. McGrath RL. Angular distributions and total cross sections of reactions of li6, li7 on b10, b11. Phys Rev (1966) 145:802.

Google Scholar

20. Scarduelli VB, Gasques LR, Chamon LC, Zagatto VAB, Alvarez MAG, Lepine-Szily A. Consistent analysis of the 11b+120sn reaction channels. Phys Rev C (2022) 106:044606. doi:10.1103/physrevc.106.044606

CrossRef Full Text | Google Scholar

21. Zagatto VAB, Gomez-Ramos M, Gasques LR, Moro AM, Chamon LC, Alvarez MAG, et al. Elastic, inelastic, and one-neutron transfer angular distributions of 6li+120sn at energies near the coulomb barrier. Phys Rev C (2022) 106:014622. doi:10.1103/physrevc.106.014622

CrossRef Full Text | Google Scholar

22. Gasques LR, Alvarez MAG, Arazi A, Carlson BV, Chamon LC, Fernandez-Garcia JP, et al. Understanding the mechanisms of nuclear collisions: A complete study of the 10b+120sn reaction. Phys Rev C (2021) 103:034616. doi:10.1103/physrevc.103.034616

CrossRef Full Text | Google Scholar

23. Gasques LR, Chamon LC, Lépine-Szily A, Scarduelli V, Zagatto VAB, Abriola D, et al. Investigation of the reaction mechanisms for 10B+197Au at near-barrier energies. Phys Rev C (2020) 101:044604. doi:10.1103/PhysRevC.101.044604

CrossRef Full Text | Google Scholar

24. Aversa M, Abriola D, Alvarez MAG, Arazi A, Cardona MA, Chamon LC, et al. Investigation of the fusion process for 10B+197AU at near-barrier energies. Phys Rev C (2020) 101:044601. doi:10.1103/PhysRevC.101.044601

CrossRef Full Text | Google Scholar

25. Alvarez MAG, Rodriguez-Gallardo M, Gasques LR, Chamon LC, Oliveira JRB, Scarduelli V, et al. Elastic scattering, inelastic excitation, and 1n pick-up transfer cross sections for 10b + 120sn at energies near the coulomb barrier. Phys Rev C (2018) 98:024621. doi:10.1103/physrevc.98.024621

CrossRef Full Text | Google Scholar

26. Gasques LR, Freitas AS, Chamon LC, Oliveira JRB, Medina NH, Scarduelli V, et al. Elastic, inelastic, and 1n transfer cross sections for the 10B+120Sn reaction. Phys Rev C (2018) 97:034629. doi:10.1103/PhysRevC.97.034629

CrossRef Full Text | Google Scholar

27. Zagatto VAB, Lubian J, Gasques LR, Alvarez MAG, Chamon LC, Oliveira JRB, et al. Elastic scattering, inelastic excitation, and neutron transfer for 7li+120sn at energies around the coulomb barrier. Phys Rev C (2017) 95:064614. doi:10.1103/physrevc.95.064614

CrossRef Full Text | Google Scholar

28. Zagatto VAB, Oliveira JRB, Gasques LR, Alcantara-Nunez JA, Duarte JG, Aguiar VP, et al. Elastic and inelastic angular distributions of the 7li+120sn system for energies near the coulomb barrier. J Phys G: Nucl Part Phys (2016) 43:055103. doi:10.1088/0954-3899/43/5/055103

CrossRef Full Text | Google Scholar

29. Kalkal S, Simpson EC, Luong DH, Cook KJ, Dasgupta M, Hinde DJ, et al. Asymptotic and near-target direct breakup of 6Li and 7Li. Phys Rev C (2016) 93:044605. doi:10.1103/PhysRevC.93.044605

CrossRef Full Text | Google Scholar

30. Chamon LC, Carlson BV, Gasques LR, Pereira D, De Conti C, Alvarez MAG, et al. Toward a global description of the nucleus-nucleus interaction. Phys Rev C (2002) 66:014610. doi:10.1103/physrevc.66.014610

CrossRef Full Text | Google Scholar

31. Chamon LC. The são Paulo potential. Nucl Phys A (2007) 787:198–205. doi:10.1016/j.nuclphysa.2006.12.032

CrossRef Full Text | Google Scholar

32. Gasques LR, Afanasjev AV, Beard M, Lubian J, Neff T, Wiescher M, et al. São paulo potential as a tool for calculating s factors of fusion reactions in dense stellar matter. Phys Rev C (2007) 76:045802. doi:10.1103/physrevc.76.045802

CrossRef Full Text | Google Scholar

33. Gasques LR. Celebrating 20 years of the sao paulo potential. Braz J Phys (2021) 51:269–76. doi:10.1007/s13538-020-00833-z

CrossRef Full Text | Google Scholar

34. Gillespie SA, Parikh A, Barton CJ, Faestermann T, Jose J, Hertenberger R, et al. First measurement of the 34s(p,gamma)35cl reaction rate through indirect methods for presolar nova grains. Phys Rev C (2017) 96:025801. doi:10.1103/physrevc.96.025801

CrossRef Full Text | Google Scholar

35. Lombardo I, Dell'Aquila D, Cinausero M, Gasques LR, Vigilante M, Zagatto VAB, et al. Study of the 33Cl spectroscopic factors via the 32S(3He, d)33Cl one-proton transfer reactiond)33cl one-proton transfer reaction. J Phys G.: Nucl Part Phys (2021) 48:065101. doi:10.1088/1361-6471/abdee4

CrossRef Full Text | Google Scholar

36. Dell’Aquila D, Gnoffo B, Lombardo I, Porto F, Russo M. Modeling heavy-ion fusion cross section data via a novel artificial intelligence approach. Jour Phys G.: Nucl Part Phys (2023) 535:88. doi:10.1088/1361-6471/ac9ad1

CrossRef Full Text | Google Scholar

37. Dell’Aquila D, Gnoffo B, Lombardo I, Redigolo L, Porto F. Nuclear structure effects on over-barrier fusion reactions investigated with a new phenomenological model. Phys Lett B (2023) 837:137642. doi:10.1016/j.physletb.2022.137642

CrossRef Full Text | Google Scholar

38. Amorini F, Cardella G, Giuliani G, Papa M, Agodi C, Alba R, et al. Isospin dependence of incomplete fusion reactions at 25mev/nucleon. Phys Rev Lett (2009) 102:112701. doi:10.1103/physrevlett.102.112701

PubMed Abstract | CrossRef Full Text | Google Scholar

39. Manduci L, Lopez O, Chbihi A, Rivet MF, Bougault R, Frankland JD, et al. Reaction and fusion cross sections for the near-symmetric system xe 129 + sn nat from 8a to 35a mev. Phys Rev C (2016) 94:044611. doi:10.1103/physrevc.94.044611

CrossRef Full Text | Google Scholar

40. Lautesse P, Nalpas L, Dayras R, Rivet MF, Parlog M, Bisquer E, et al. Evolution of the fusion cross-section for light systems at intermediate energies. Eur Phys J A (2006) 27:349–57. doi:10.1140/epja/i2005-10272-2

CrossRef Full Text | Google Scholar

41. Bougault R, Bonnet E, Borderie B, Chbihi A, Dell'Aquila D, Fable Q, et al. Light charged clusters emitted in 32 mev/nucleon xe 136,124 + sn 124,112 reactions: Chemical equilibrium and production of he 3 and he 6. Phys Rev C (2018) 97:024612. doi:10.1103/physrevc.97.024612

CrossRef Full Text | Google Scholar

42. Gramegna F, Cicerchia M, Fabris D, Marchi T, Cinausero M, Degerlier M, et al. Clustering in light nuclei and their effects on fusion and pre-equilibrium processes. Eur Phys J Web Conf (2017) 163:00020. doi:10.1051/epjconf/201716300020

CrossRef Full Text | Google Scholar

43. Cicerchia M, Gramegna F, Fabris D, Marchi T, Cinausero M, Mantovani G, et al. Study of lcp emissions from 46Ti*. Nuov Cim C (2019) 42:95. doi:10.1393/ncc/i2019-19095-8

CrossRef Full Text | Google Scholar

44. Cicerchia M, Gramegna F, Fabris D, Cinausero M, Marchi T, Andreetta G, et al. Enhanced α α-particle production from fusion evaporation reactions leading to 46Ti. J Phys G.: Nucl Part Phys (2021) 48:045101. doi:10.1088/1361-6471/abe5f6

CrossRef Full Text | Google Scholar

45. Lopez O, Parlog M, Borderie B, Rivet M, Lehaut G, Tabacaru G, et al. Improving isotopic identification with indra silicon–csi(tl) telescopes. Nucl Instr Meth Phys Res A (2018) 884:140–9. doi:10.1016/j.nima.2017.12.041

CrossRef Full Text | Google Scholar

46. Henri M, Lopez O, Durand D, Borderie B, Bougault R, Chbihi A, et al. In-medium effects in central heavy ion collisions at intermediate energies. Phys Rev C (2020) 101:064622. doi:10.1103/physrevc.101.064622

CrossRef Full Text | Google Scholar

47. Frankland JD, Gruyer D, Bonnet E, Borderie B, Bougault R, Chbihi A, et al. Model independent reconstruction of impact parameter distributions for intermediate energy heavy ion collisions. Phys Rev C (2021) 104:034609. doi:10.1103/physrevc.104.034609

CrossRef Full Text | Google Scholar

48. Pagano A, Alderighi M, Amorini F, Anzalone A, Arena L, Auditore L, et al. Fragmentation studies with the chimera detector at lns in catania: Recent progress. Nucl Phys A (2004) 734:504–11. doi:10.1016/j.nuclphysa.2004.01.093

CrossRef Full Text | Google Scholar

49. Cardella G, Acosta L, Amorini F, Auditore L, Berceanu I, Castoldi A, et al. Particle gamma correlations in 12c measured with the csi(tl) based detector array chimera. Nucl Instr Meth Phys Res A (2015) 799:64–9. doi:10.1016/j.nima.2015.07.054

CrossRef Full Text | Google Scholar

50. Russotto P, De Filippo E, Pagano EV, Acosta L, Auditore L, Cap T, et al. Dynamical versus statistical production of intermediate mass fragments at fermi energies. Eur Phys J A (2020) 56:12. doi:10.1140/epja/s10050-019-00011-z

CrossRef Full Text | Google Scholar

51. Wallace MS, Famiano M, van Goethem MJ, Rogers A, Lynch W, Clifford J, et al. The high resolution array (hira) for rare isotope beam experiments. Nucl Instr Meth Phys Res A (2007) 583:302–12. doi:10.1016/j.nima.2007.08.248

CrossRef Full Text | Google Scholar

52. Dell’Aquila D, Sweany S, Brown K, Chajecki Z, Lynch W, Teh F, et al. Non-linearity effects on the light-output calibration of light charged particles in csi(tl) scintillator crystals. Nucl Instr Meth Phys Res A (2019) 929:162–72. doi:10.1016/j.nima.2019.03.065

CrossRef Full Text | Google Scholar

53. Sweany S, Lynch W, Brown K, Anthony A, Chajecki Z, Dell’Aquila D, et al. Reaction losses of charged particles in csi(tl) crystals. Nucl Instr Meth Phys Res A (2021) 1018:165798. doi:10.1016/j.nima.2021.165798

CrossRef Full Text | Google Scholar

54. Davin B, de Souza R, Yanez R, Larochelle Y, Alfaro R, Xu H, et al. Lassa: A large area silicon strip array for isotopic identification of charged particles. Nucl Instr Meth Phys Res A (2001) 473:302–18. doi:10.1016/s0168-9002(01)00295-9

CrossRef Full Text | Google Scholar

55. Salomon F, Edelbruck P, Brulin G, Borderie B, Richard A, Rivet M, et al. Front-end electronics for the fazia experiment. Jour Instr (2016) 11:C01064. doi:10.1088/1748-0221/11/01/c01064

CrossRef Full Text | Google Scholar

56. Pastore G, Gruyer D, Ottanelli P, Le Neindre N, Pasquali G, Alba R, et al. Isotopic identification using pulse shape analysis of current signals from silicon detectors: Recent results from the fazia collaboration. Nucl Instr Meth Phys Res A (2017) 860:42–50. doi:10.1016/j.nima.2017.01.048

CrossRef Full Text | Google Scholar

57. Valdré S, Casini G, Le Neindre N, Bini M, Boiano A, Borderie B, et al. The fazia setup: A review on the electronics and the mechanical mounting. Nucl Instr Meth Phys Res A (2019) 930:27. doi:10.1016/j.nima.2019.03.082

CrossRef Full Text | Google Scholar

58. Verde G, Acosta L, Minniti T, Amorini F, Auditore L, Bassini R, et al. The farcos project: Femtoscope array for correlations and femtoscopy. Jour Phys Conf Ser (2013) 420:012158. doi:10.1088/1742-6596/420/1/012158

CrossRef Full Text | Google Scholar

59. Acosta L, Andolina R, Auditore L, Boiano C, Cardella G, Castoldi A, et al. Campaign of measurements to probe the good performance of the new array farcos for spectroscopy and correlations. J Phys Conf Ser (2016) 730:012001. doi:10.1088/1742-6596/730/1/012001

CrossRef Full Text | Google Scholar

60. Dell’Aquila D, Lombardo I, Verde G, Vigilante M, Ausanio G, Ordine A, et al. Oscar: A new modular device for the identification and correlation of low energy particles. Nucl Instr Meth Phys Res A (2018) 877:227–37. doi:10.1016/j.nima.2017.09.046

CrossRef Full Text | Google Scholar

61. Borderie B, Le Neindre N, Rivet M, Desesquelles P, Bonnet E, Bougault R, et al. Phase transition dynamics for hot nuclei. Phys Lett B (2018) 782:291–6. doi:10.1016/j.physletb.2018.05.040

CrossRef Full Text | Google Scholar

62. Vient E, Augey L, Borderie B, Chbihi A, Dell’Aquila D, Fable Q, et al. Understanding the thermometry of hot nuclei from the energy spectra of light charged particles. Eur Phys J A (2018) 54:96. doi:10.1140/epja/i2018-12531-5

CrossRef Full Text | Google Scholar

63. Vient E, Manduci L, Legouee E, Augey L, Bonnet E, Borderie B, et al. New ”3d calorimetry” of hot nuclei. Phys Rev C (2018) 98:044611. doi:10.1103/physrevc.98.044611

CrossRef Full Text | Google Scholar

64. Vient E, Manduci L, Legouee E, Augey L, Bonnet E, Borderie B, et al. Validation of a new ”3d calorimetry” of hot nuclei with the hipse event generator. Phys Rev C (2018) 98:044612. doi:10.1103/physrevc.98.044612

CrossRef Full Text | Google Scholar

65. Ma YG, Siwek A, Péter J, Gulminelli F, Dayras R, Nalpas L, et al. Surveying the nuclear caloric curve. Phys Lett B (1997) 390:41. doi:10.1016/S0370-2693(96)01372-X

CrossRef Full Text | Google Scholar

66. Borderie B, Rivet MF. Nuclear multifragmentation and phase transition for hot nuclei. Prog Part Nucl Phys (2008) 61:551–601. doi:10.1016/j.ppnp.2008.01.003

CrossRef Full Text | Google Scholar

67. Pichon M, Tamain B, Bougault R, Gulminelli F, Lopez O, Bonnet E, et al. Bimodality: A possible experimental signature of the liquid–gas phase transition of nuclear matter. Nucl Phys A (2006) 779:267–96. doi:10.1016/j.nuclphysa.2006.08.008

CrossRef Full Text | Google Scholar

68. Marini P, Zheng H, Boisjoli M, Verde G, Chbihi A, Napolitani P, et al. Signals of bose einstein condensation and fermi quenching in the decay of hot nuclear systems. Phys Lett B (2016) 756:194–9. doi:10.1016/j.physletb.2016.02.063

CrossRef Full Text | Google Scholar

69. De Filippo E, Amorini F, Anzalone A, Auditore L, Baran V, Berceanu I, et al. Dynamical signals in fragmentation reactions: Time scale determination from three fragments correlations by using the 4p chimera multidetector. Acta Phys Pol B (2009) 40:1199.

Google Scholar

70. De Filippo E, Pagano A, Russotto P, Amorini F, Anzalone A, Auditore L, et al. Correlations between emission timescale of fragments and isospin dynamics in 124Sn+64Ni and 112Sn+58Ni reactions at 35a mev. Phys Rev C (2012) 86:014610. doi:10.1103/PhysRevC.86.014610

CrossRef Full Text | Google Scholar

71. Papa M, Berceanu I, Acosta L, Amorini F, Agodi C, Anzalone A, et al. Dipolar degrees of freedom and isospin equilibration processes in heavy ion collisions. Phys Rev C (2015) 91:041601. doi:10.1103/physrevc.91.041601

CrossRef Full Text | Google Scholar

72. Camaiani A, Casini G, Piantelli S, Ono A, Bonnet E, Alba R, et al. Isospin diffusion measurement from the direct detection of a quasiprojectile remnant. Phys Rev C (2021) 103:014605. doi:10.1103/physrevc.103.014605

CrossRef Full Text | Google Scholar

73. Ciampi C, Piantelli S, Casini G, Pasquali G, Quicray J, Baldesi L, et al. First results from the indra-fazia apparatus on isospin diffusion in ni 58,64 + ni 58,64 systems at fermi energies. Phys Rev C (2022) 106:024603. doi:10.1103/physrevc.106.024603

CrossRef Full Text | Google Scholar

74. Danielewicz P. Quantum theory of nonequilibrium processes, i. Ann Phys (1984) 152:239–304. doi:10.1016/0003-4916(84)90092-7

CrossRef Full Text | Google Scholar

75. Tsang MB, Zhang Y, Danielewicz P, Famiano M, Li Z, Lynch WG, et al. Constraints on the density dependence of the symmetry energy. Phys Rev Lett (2009) 102:122701. doi:10.1103/physrevlett.102.122701

PubMed Abstract | CrossRef Full Text | Google Scholar

76. Ayik S, Grégoire C. Transport theory of fluctuation phenomena in nuclear collisions. Nucl Phys A (1990) 513:187–204. doi:10.1016/0375-9474(90)90348-p

CrossRef Full Text | Google Scholar

77. Colonna M, Di Toro M, Guarnera A, Maccarone S, Zielinska-Pfabe M, Wolter H. Fluctuations and dynamical instabilities in heavy-ion reactions. Nucl Phys A (1998) 642:449–60. doi:10.1016/s0375-9474(98)00542-9

CrossRef Full Text | Google Scholar

78. Bao-An L, Lie-Wen C. Nucleon-nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies. Phys Rev C (2005) 72:064611. doi:10.1103/physrevc.72.064611

CrossRef Full Text | Google Scholar

79. Wolter H, Colonna M, Cozma D, Danielewicz P, Ko CM, Kumar R, et al. Transport model comparison studies of intermediate-energy heavy-ion collisions. Prog Part Nucl Phys (2022) 125:103962. doi:10.1016/j.ppnp.2022.103962

CrossRef Full Text | Google Scholar

80. Papa M, Maruyama T, Bonasera A. Constrained molecular dynamics approach to fermionic systems. Phys Rev C (2001) 64:024612. doi:10.1103/physrevc.64.024612

CrossRef Full Text | Google Scholar

81. Ono A. Antisymmetrized molecular dynamics with quantum branching processes for collisions of heavy nuclei. Phys Rev C (1999) 59:853–64. doi:10.1103/physrevc.59.853

CrossRef Full Text | Google Scholar

Keywords: nuclear reactions, nuclear dynamics, alpha-cluster, fermi energies, nuclear thermodynamics, nuclear molecules

Citation: Lombardo I, Dell’Aquila D, Gasques LR and Lépine-Szily A (2023) Editorial: Nuclear structure and dynamics with stable and unstable beams. Front. Phys. 11:1153358. doi: 10.3389/fphy.2023.1153358

Received: 29 January 2023; Accepted: 03 February 2023;
Published: 15 February 2023.

Edited and reviewed by:

Chong Qi, Royal Institute of Technology, Sweden

Copyright © 2023 Lombardo, Dell’Aquila, Gasques and Lépine-Szily. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Ivano Lombardo, ivano.lombardo@ct.infn.it

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.