Your new experience awaits. Try the new design now and help us make it even better

ORIGINAL RESEARCH article

Front. Chem.

Sec. Theoretical and Computational Chemistry

Volume 13 - 2025 | doi: 10.3389/fchem.2025.1599715

QSPR Graph Model to Explore Physicochemical Properties of Potential Antiviral Drugs of Dengue Disease through Novel Coloring-based Topological Indices

Provisionally accepted
  • Vellore Institute of Technology (VIT), Chennai, India

The final, formatted version of the article will be published soon.

Dengue is a viral disease transmitted to humans through mosquito bites. Researchers have investigated various drugs with potential antiviral properties against it. Some of the promising antiviral drugs include UV-4B (N-9-methoxynonyl-1-deoxynojirimycin), Lycorine, ST-148, 4-HPR, Silymarin, Baicalein, Quercetin, Naringenin, Nelfinavir, Ivermectin, Mosnodenvir (JNJ-1802), NITD-688, Metoclopramide, JNJ-A07 and Betulinic acid. The chemical structure of a drug can be modelled as an isomorphic molecular graph G(V, E), considering the atoms as the vertex set V (G) and the bonds between the pair of atoms as the edge set E(G). Graph coloring and topological indices serve as a powerful tools for analyzing the isomorphic molecular graph, providing the structural characterization and computational studies. In this article, two types of coloring-based topological indices viz., chromatic topological indices and induced color-based topological indices, are introduced. Linear regression is employed in the QSPR(Quantitative Structure Property Relationship) analysis to examine the dengue antivirals through the computed topological indices of the aforementioned drugs. The results of the QSPR analysis reveal that the induced color-based indices provide better predictions of the physicochemical properties of dengue-treating drugs.

Keywords: Dengue, Isomorphic molecular graph, Topological indices, Color sum, physicochemical properties, QSPR analysis

Received: 25 Mar 2025; Accepted: 30 Jun 2025.

Copyright: © 2025 C and Bommahalli Jayaraman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Balamurugan Bommahalli Jayaraman, Vellore Institute of Technology (VIT), Chennai, India

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.