ORIGINAL RESEARCH article
Front. Nutr.
Sec. Nutrition, Psychology and Brain Health
Volume 12 - 2025 | doi: 10.3389/fnut.2025.1667729
Mapping grey matter changes in anorexia nervosa: A functional connectivity network approach
Provisionally accepted- 1Yancheng Third People's Hospital, Yancheng, China
- 2Department of Radiology, Binhai Maternal and Child Health Hospital, Yancheng, yancheng, China
- 3Nanjing Medical University, Nanjing, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Studies using voxel-based morphometry (VBM) have shown considerable variability in gray matter (GM) changes in anorexia nervosa (AN). However, it remains unclear whether these changes converge on common brain networks underlying the disorder. Methods: A systematic review was conducted using the PubMed, Embase, and Web of Science databases to identify studies on whole-brain GM alterations in AN published up to October 10, 2024. The Human Connectome Project (HCP) dataset (n = 1093) and functional connectivity network mapping (FCNM) approach to identify common brain networks associated with alterations in AN. Results: A total of 26 studies involving 667 individuals with AN and 659 healthy controls (HC) were included in this study. Combining the HCP dataset and the FCNM technique, we demonstrated that the disrupted neural networks primarily involved the auditory network, ventral default mode network (DMN), dorsal DMN, and sensorimotor network (SMN). Subgroup analyses further revealed differences in the affected neural networks across specific subgroups, including females-only, adolescents, and adults. Conclusions: The heterogeneous GM alterations in AN can be attributed to common abnormalities within the auditory network, DMN, and SMN. These disruptions are linked to distorted body image, impaired emotional regulation, and disrupted sensory-motor integration in AN. The FCNM technique provides a unified network-level understanding of the neurobiological mechanisms underlying AN, offering insights for targeted therapeutic strategies.
Keywords: Anorexia Nervosa, voxel-based morphometry, gray matter, Network localization, functional connectivity network mapping
Received: 17 Jul 2025; Accepted: 29 Aug 2025.
Copyright: © 2025 Hucheng, Wang, Li, Gu, Zhang, Wang, Dai and Pan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: PingLei Pan, Nanjing Medical University, Nanjing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.