- 1DAWES Centre for Future Crime at UCL, Jill Dando Institute for Security and Crime Science, London, United Kingdom
- 2Institute for Materials Discovery, University College London (UCL), London, United Kingdom
- 3Department of Chemistry, University College London, London, United Kingdom
Forensic science plays an important part in crime reduction but faces many challenges. These include the validity, cost and complexity of current sensors used, and a reliance on trained professionals to conduct analyses. Recent advances in sensor technologies present a promising opportunity for rapid, decentralized, and cost-effective analysis by untrained individuals in the field. To date, a comprehensive systematic review covering sensing technologies and use cases has been lacking. This paper addresses that gap. After the initial screening of papers, 1,482 publications were included in the review, from which data on target analytes and sensing technologies were extracted. Given that law enforcement have limited resources, a second screening examined papers that focused on low-cost sensing devices published from 2020 onwards (N = 791). Overall, our review identified eleven key analyte categories that had been researched: illicit drugs, fingerprints, explosives, body fluids, food safety, poisons and toxins, pollutants, counterfeits and documentation, fire, gunshot, and others. Low-cost sensing technologies identified were categorised into electrochemical, colourimetric, immunoassay, luminescence and SERS. We review trends in the research reported, barriers to commercialisation and adoption, and review the use of these types of sensors by law enforcement agencies. Current sensors used by authorities face challenges of high costs, specificity issues, limited detection capabilities and complex sample preparation. Emerging research focuses on cost-effective printed electrodes and dual detection techniques to enhance analyte sensitivity and detection accuracy. Notably, body fluid analysis plays a crucial role in criminal cases, but current sensors suffer issues like false positives, DNA degradation, and high costs. Studies investigating eco-friendly materials and dual-detection approaches show promise in addressing these issues. Illicit drug analysis constitutes over one-third (36%) of included publications. In the UK, police rely on NIK tests and DrugWipe sensors for on-site drug detection, but challenges related to sensitivity, specificity, and confirmatory testing persist. Ongoing research explores dual detection methods, lateral flow immunoassays, and electro-chemiluminescent screening to enhance specificity and matrix tolerance. Future efforts should prioritise refining dual detection methods, reducing matrix interference, low-cost/eco-friendly materials and fostering collaboration between academia and law enforcement for effective implementation in these areas.
1 Introduction
Forensic science plays an important role in the detection and prosecution of crime. It draws on a variety of scientific disciplines and approaches (Bollella and Katz, 2020; Pereira de Oliveira et al., 2018), and can involve the analysis of biological fluids, illicit drug samples, gunshot residues and so on. While valuable, traditional technologies presently employed have problems to include damaging effects on DNA retrieval, unacceptable specificity, and the inability to perform concurrent analyses as part of a multiplex assay (Gooch et al., 2014). The utilisation of sensors, particularly biosensors, represents a considerable opportunity (Singh et al., 2014). Numerous forensic analysis methods use presumptive analysis (i.e., they are not confirmatory) and necessitate collected samples to be centrally analysed in a laboratory to meet evidential requirements. However, sensors may enable untrained persons to undertake rapid, decentralised (and less expensive) analyses of complex samples in the field (Bollella and Katz, 2020). Biosensors have been well developed in the healthcare sector, food and beverage industries and environmental monitoring fields (Chadha et al., 2022). However, even though their use may offer sensitive, user-friendly, selective and rapid on-site tools for analysis, in the context of forensic science, biosensors are relatively under-developed (Aydindogan et al., 2019; Geng et al., 2017; Yáñez-Sedeño et al., 2019).
In this article, we report a systematic review to take stock of the current uses of biosensors and to identify key areas for future research. We begin by explaining why sensors are important in this context and specify what defines a sensor and the key elements of the sensor we will be focussing on (target analytes and sensing technologies). We then discuss the approach taken to review the literature, detailing why a systematic approach was taken, present our findings, and then make suggestions for future work.
1.1 Investigating crime
To detect and investigate crime, illegal behaviour must be identified, and an understanding and reconstruction of the crime event possible. To do this, for many forms of crime, a coherent analysis of physical and other evidence is needed. This is termed forensic science (Chisum and Turvey, 2011). Recent legal and scientific advances have emphasised concerns over the validity of inferences and techniques used in forensic science. Validity is crucial as scientific inaccuracies have consequences for the criminal justice system, crime reduction and society. The reconstruction of a crime relies strongly on Locard’s Exchange Principle, that every contact leaves a trace (Locard, 1920). Other situations necessitate on-site detection at the time of a crime; for instance, roadside drug testing mandates that a trace of drug sample be identified immediately. Therefore, methods for analysis and identification of these traces are needed. Sensors are utilised already in many scenarios dealing with traces (target analytes) to detect crime. However, improved validity and increased capacity are needed. Sensors may help to deliver both.
1.2 Sensors
A sensor is defined as “a device which detects and measures a physical property and records, indicates, or otherwise responds to it” (Soanes and Stevenson, 2008). This can be anything from thermometers, accelerometer sensors to alcohol sensors.
1.2.1 Biosensors
Due to recent advances in their development, one branch of sensors that is of particular importance to combating crime are biosensors (Parkhey and Mohan, 2018). Developments are mainly due to the utilisation of new nanomaterials and nanostructured devices (Harish et al., 2022), developments in microfabrication and miniaturisation technologies (Baracu and Gugoasa, 2021), new bio-recognition molecules (Bazin et al., 2017) and improved collaboration between life- and physical-scientists (Parkhey and Mohan, 2018).
Biosensor design incorporates three main stages. First, the biosensor must identify a specific analyte using a specific recognition component (bioreceptor–e.g., nuclei acids, proteins or other biological structures) that binds to the target analyte (Weetall, 1996). Bioreceptors are immobilized on a transducer surface to ensure specific detection. Novel bioreceptors are currently under development to replace traditional antibody-based methods. Notably, aptamers—such as peptide aptamers and oligonucleotide aptamers, comprised of single-stranded DNA or RNA—are emerging as promising alternatives (Parkhey and Mohan, 2018).
Second, the biological binding event must be converted into a physicochemical signal. Transducers translate this biological signal into a quantifiable one, which can be mechanical (force, pressure, displacement, acceleration), optical (light intensity, refractive index) or electrical (current, potential). Once transduced the signal can be processed (filtering, amplification) and transformed into pertinent chemical data (the third stage in the process).
1.3 Target analytes
An analyte is a substance whose chemical constituents are to be identified or measured (Soanes and Stevenson, 2008). Understanding current and future sensor applications for crime reduction requires identifying typical target analytes. This systematic review will categorize common analytes, including illicit drugs, fingerprints, and body fluids. For instance, sensors that detect blood stains at crime scenes can provide evidence such as blood type, DNA, and links to suspects or victims. Fast, low-cost, and reliable sensors are essential, and with advancements in technology comes the ability to detect a greater number of target analytes in smaller quantities (Gove and Durini, 2014).
1.4 Sensing technologies
Once target analytes are identified, suitable sensing technologies must be determined. Lab-based technologies include mass spectrometry using analysis of mass-to-charge-ratios (Gross, 2017), polymerase chain reaction (PCR) for DNA amplification (Hue-Roye and Vege, 2008) and high-performance liquid chromatography (HPLC) for rapid component separation (Kazakevich and Lobrutto, 2007).
Portable, lower cost technologies include electrochemical, colorimetric, immunoassay, luminescence and surface-enhance Raman spectroscopy (SERS). Electrochemical sensors use a recognition element coupled to an electrochemical transducer to give information about chemical composition (Yáñez-Sedeño et al., 2019). Voltammetry, a common electrochemical method, provides advantages over other electrochemical detection methods in portability (Ribeiro et al., 2020), matrix tolerance (Haghighi et al., 2020) and tolerance against potential interferents (Grothe et al., 2021). Colorimetric sensors utilise a specific indicator or reagent that reacts selectively with the target analyte providing a colour change for identification (Suslick et al., 2004). Immunoassays use antibodies or antigens to measure analyte presence or concentration (Diamandis and Christopoulos, 1996). Luminescence, including fluorescence, phosphorescence and chemiluminescence, uses characteristics such as intensity, wavelength and duration of emitted light to provide information about the target analyte (Holliday, 2016). Raman spectroscopy uses the interaction of molecular vibrations with light to provide non-destructive information about crystallinity, chemical structure and molecular interactions (Long, 1977). SERS enhances Raman scattering of molecules when they are adsorbed on or near to a SERS-active surface including nanostructures made from gold or silver (Xiu et al., 2021).
1.4.1 Nanomaterials
Nanomaterials are essential for advancing diagnostic technologies, offering tailored properties in biomaterials (Bollella and Katz, 2020; Kim, 2017). Defined as substances with at least one dimension in the nanometer range (10−9 m), their small size confers unique properties attracting significant research interest due to their low cost (limited materials usage) and uniquely size-dependent properties (Amiri et al., 2021). Recent studies emphasize the role of nanomaterial-based biosensors, especially in electrochemical technologies, in enhancing portable devices by improving biocompatibility, stability, surface energy, and signal amplification (Su et al., 2017). Nano-coatings have also advanced bioreceptor immobilization, preventing non-specific binding (Bhalla et al., 2016). These developments address demands for biosensors with enhanced selectivity, sensitivity, rapid response and low cost (Su et al., 2017). Therefore, future research on crime reducing sensors will likely focus on nanomaterial-based biosensors.
1.5 Low-cost, on-site and performance
To date, devices have been costly and used complex methods which require an expert to undertake analyses. However, given budget constraints in policing and the ubiquity of some problems (e.g., drug driving), the next-generation of sensing devices will increasingly need to prioritise optimal performance during usage and post-storage, as well as being user-friendly and affordable (both in operation and production) (Weetall, 1996).
1.6 Systematic review
To understand advances in the use of sensing technologies to reduce crime and to map out a future research agenda, a systematic review (SR) was conducted. Ad hoc literature reviews present often sparse and biased coverage of an existing literature, whereas SRs are constructed to reduce bias by using transparent and systematic search approaches, enabling the extraction of as great a proportion of the existing evidence as is feasible on a subject (Cockbain et al., 2018). SRs are typically undertaken to gather evidence on “what works” in specific medicine and healthcare scenarios (Curtis and Cairncross, 2003) where data is plentiful. But SRs can also be employed for broader reviews for emerging issues (Blythe and Johnson, 2019; Elgabry et al., 2020), as is the case here.
1.7 Existing literature
Existing literature reviews on target analytes and sensing technologies for combating crime often focus on specific areas without a systematic approach. For instance, Honeychurch’s (Honeychurch, 2019) review on electroanalytical-based techniques for detecting benzodiazepines is detailed but narrow in scope, focussing on a specific analyte and sensing technology.
A 2020 special issue of Biosensors (Bollella and Katz, 2020), “The Potential of (bio)sensors for the Forensic Sciences” highlighted the potential of biosensors in forensic science. The special issue examines the crucial role biosensors can play in efficiently and accurately improving the techniques of crime detection (Bollella and Katz, 2020). However, although this review is broader in its approach than other articles, dealing with many target analytes, the sensing technology considered was limited to electrochemical biosensors.
Therefore, a wider scoped review of analytes and sensing technologies to reduce crime is of clear value to capitalise on recent advances in other sectors (Parkhey and Mohan, 2018). As far as we are aware, this is the first systematic review to scope all potential target analytes and sensing technologies of a sensor for combating crime. The overarching aims of the review are to understand:
1. What analytes are targeted in sensors for combating crime?
2. What sensing technologies have been used to combat crime?
3. What are the most recent directions of on-site and low-cost sensing devices?
4. What are the possible future avenues for further research?
2 Methodology and design
A SR protocol, developed using the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) guidelines (Shamseer et al., 2015), defined the scope of the review and the search strategy (see below). The protocol and search query were reviewed by an academic librarian with expertise in systematic reviews and updated in response to feedback.
2.1 Information sources
Gusenbauer and Haddaway (2020) identified principle academic search systems used in SRs. Of those identified, the most suitable were: ProQuest, PubMed and Web of Science. Searches focused on the title, abstract and keywords of articles, along with the field tag used (noft, Ti/Ab and TS respectively).
In addition, to find articles that may be missed by this search strategy, a chain citation technique (backward search) and the snowballing (forward search) of key studies identified was used (Cribbin, 2011).
2.2 Search query
To locate articles, a search query was refined, comprising two components: a sensing device concept and a criminal application concept. Before conducting the search, search terms were piloted and refined to achieve a balance between sensitivity (retrieving a high proportion of relevant articles), and precision (retrieving a low proportion of irrelevant articles). Relevant terms and synonyms were used to facilitate a systematic search.
Concept 1:
biosens* OR biomaterial* OR nanomaterial* OR nanoparticle* OR nanotechnolog* OR biotechnology* OR sensor*
Concept 2:
crime* OR criminal* OR offend* OR forensic* OR terror* OR illegal* OR illicit* OR unlawful*
Where the truncation character (*) retrieves variations of the search term, for example, crime* returns articles that include the term crime and crimes.
2.3 Eligibility criteria
The exclusion and inclusion criteria used to sift articles followed the PICOS format (Methley et al., 2014) and were applied at both the title and abstract, and full-text screening stages. The PICOS criteria used were:
Population (P): In contrast to medical studies, the population was less critical. Articles from the last 8 years (13/05/2016–13/05/2023) were considered, as older publications were less likely to be relevant due to rapid advances in sensing technology.
Interventions (I): Included articles focused on current or potential future uses of chemical and biochemical sensing devices to combat crime. Studies on other (sensing) technologies, such as new or emerging computer technologies (e.g., wireless sensor networks, IoT, machine learning), image and sound processing and those examining cyber or data security were excluded.
Outcomes (O): Measured whether the sensing technology could detect a specific target analyte.
Study Types (S): Included peer-reviewed journal articles, government or official documents (legal documents), and academic theses. Excluded were commentaries, books/book reviews, opinions, and working papers. Studies had to be written in English language and journal articles peer-reviewed, with the latter ensuring publications were of sufficient quality (Koshy et al., 2018).
2.4 Study selection
In stage 1, titles and abstracts were screened using the PICOS criteria and the EPPI-Reviewer 4.0 software (Thomas et al., 2010). Figure 1 guided decision making to ensure consistency by the primary reviewer and to assist co-reviewers during an inter-rater reliability (IRR) exercise. To assess IRR, a random sample of 5% of the identified publications were assessed on title and abstract by two other reviewers. Agreement between first reviewer and co-reviewers was measured using the prevalence-adjusted and bias-adjusted kappa (PABAK) statistic (Elgabry et al., 2020; Smith et al., 2011) (Equation 1), yielding values of 0.81 and 0.84, indicating very good agreement. The primary reviewer subsequently screened the full text of all articles included during stage 1 of the screening process.
2.5 Data extraction and analysis
For each article, we extracted pertinent information, including study identifiers (publication year, author(s), publication type) and outcomes (target analyte, sensing technology, detection method). Following data extraction, findings were synthesised using a thematic analysis (Clarke and Braun, 2017).
2.6 Further exclusion
Following the initial systematic review and summary of core information, a more in-depth study was then performed on a sub-set of included publications. As noted in a special issue of Biosensors (Bollella and Katz, 2020) the future of evidence analysis in criminal investigations relies on the development of rapid, decentralised and low-cost testing by untrained individuals. For these reasons and because of the fast pace of research in sensing technologies, a more detailed analysis was carried out. The further eligibility criteria for the second stage were that.
• The publications date was on or after 01/01/2020
• The sensing technology was low-cost (as detailed in Section 1.4)
3 Results and discussion
In the results section, we first present findings from the initial SR screening, examining trends in publication numbers and target analytes identified over the last 8 years. Secondly, our further screening results are presented and discussed, focussing on publications from the last four and a half years that discuss low-cost sensing technologies. Publications are categorised by target analyte addressed with discussions looking at numbers of publications, sensing technologies used, and key themes identified. Current technologies used by law enforcement and local authorities are evaluated, and areas where further research could significantly impact crime reduction, based on SR results, highlighted.
3.1 Initial screening (2016-2023)
Figure 2 shows the number of articles identified, included and excluded at each review stage. The pre-defined search query resulted in 2,504 results from ProQuest, 978 from PubMed and 2,982 from Web of Science, plus 9 from backward searches and 6 from forward searches. Of the 6,479 publications initially identified, 22% were duplicates and removed. Title and abstract screening excluded 67% of the remaining publications, and full-text screening excluded another 12%. Ultimately, 1,482 publications were carried forward for analysis.

Figure 2. PRISMA flowchart summarising the inclusion and exclusion steps of the systematic review performed.
There was a year-on-year increase in included publications, from 134 in 2017 to more than double that amount (Ge et al., 2020) in 2022. This growth reflects increased research and development of biosensors (Parkhey and Mohan, 2018), underscoring the need to explore their potential applications for crime reduction.
3.1.1 Eleven target analytes identified
Categorising included publications by target analytes is crucial for understanding current trends in sensing devices and enabling a more systematic analysis. Thematic analysis of the included publications identified eleven identified target analytes:
1. Fire
2. Gunshot
3. Counterfeits and documentation
4. Pollutants (e.g., adulterated fuels, industrial waste)
5. Body fluids (any target analyte that could be found in body fluids e.g., seminal or vaginal fluid, salivary amylase, blood, urine, DNA)
6. Explosives
7. Poisons and toxins (e.g., mycotoxins, pesticides)
8. Fingerprints
9. Food safety (e.g., food poisoning, adulteration)
10. Illicit drugs–As illicit drugs represented a large proportion of the included publications the category was further subdivided [depressants, stimulants, hallucinogens, pharmaceuticals, dissociates, cannabinoids and opioids per Target Zero (Author Anonymous, 2025a) Zero1]
11. Other (e.g., radioactive materials, illegal wildlife trade)
Figure 3A shows that the largest volume of included publications (36%) focussed on illicit drugs, followed by food safety (20%), fingerprints (15%) and poisons/toxins (14%). The large proportion of publications in these areas indicates strong research interest and rapid development but also reflects the broad scope of some of these categories. For example, the illicit drugs category is expansive. Additionally, Figure 3A highlights less interest and development in sensors for fire and gunshot analysis.

Figure 3. (A) Trends in the percentage of publications relating to each identified target analyte from 2016 to 2023*. Noting that some publications related to multiple target analytes and therefore the total percentage is seen to sum to more than 100%. (B) Trends in percentage of different categories of illicit drug publications identified from 2017 to 2022. Noting that some publications related to multiple target drugs or were not assigned to one of the 7 drug categories and therefore the total percentage is seen not to sum 100%. [*where 2016 and 2023 are not shown as data collection was only for half of these years.].
Over the past 8 years, the proportion of publications for each target analyte has remained fairly constant (Figure 3A). However, publications on fingerprint and poison/toxin detection have decreased, while those on illicit drugs have increased, especially from 2020 to 2022, echoing a growing global concern about substance abuse (United Nations, 2023) and could thus represent an important avenue for further research.
Figure 3B shows that overall about 30% of illicit drug publications focussed on the design of sensors to detect stimulant abuse. Opioid-related publications are seen to have increased rapidly from 2019 onwards. This aligns with the rising opioid crisis and persistent stimulant misuse. According to the US National Survey on Drug Use and Health (NSDUH), reported drug use in the US increased by 47% from 2016 to 2022 (Author Anonymous, 2025b), with 13% of Americans starting or increasing substance use to cope with COVID-19 stress (Abramson, 2021). These trends suggest the time critical nature of sensor development in illicit drug detection.
3.1.2 Sensing technologies used
Eight different types of sensing elements were identified within the included publications and were classified as high or low-cost technologies (detailed in Section 1.4). High-cost technologies, requiring expensive equipment and trained professionals, included mass spectrometry (5% of publications), PCR (1%), and HPLC (2%). Low-cost technologies, suitable for use by untrained persons, included electrochemical (27%), colorimetric (11%), immunoassay (18%), luminescence (32%), and SERS (15%).
3.2 Detailed analyses (2020-2023)
After the initial overview, a more in-depth analysis was conducted on articles published from 2020 onwards, focusing on low-cost sensing technologies due to the reasons highlighted in the methods section and the fast-pace of sensor development. A total of 590 publications were excluded as they had a publication date before 01/01/2020 and 110 were excluded due to the high-cost of the technology discussed. This left 782 publications for more detailed analysis.
High- and low-cost technologies are classified based on material costs, instrumentation complexity, expenses, and accessibility. Low-cost methods use inexpensive materials and portable equipment for on-site testing, while high-cost methods require complex preparation, advanced instruments, and specialised operators for centralised labs.
Within the high-cost publications, mass spectrometry accounted for 45% followed by HPLC for 15% (Figure 4). Although these technologies allow accurate analysis [see Chiang et al. (2019)] their expense, requirement of trained users and time intensive nature makes them unsuitable for mass-market production and irrelevant to the rest of this review.

Figure 4. Number of publications identified relating to different low-cost sensing technologies (included) and high-cost sensing technologies (excluded).
Low-cost publications comprised 88% of those identified from 2020 onwards, with luminescence and electrochemical technologies being the most prevalent (Figure 4). The literature focus on these technologies indicates that they are at the forefront of work being done in low-cost sensing development.
The subsequent sections discuss the above outlined publications, organised by target analyte (Figure 5). Tables summarise key themes identified in the included publications, categorised by sensing technology. Key themes and publications are explored further within the accompanying text to outline current technologies and potential areas for further research. Alongside the publications reviewed in the SR, an outline of the current sensing technologies used by UK police and authorities is provided. The shortfalls of these technologies are discussed, and the findings from the SR used to suggest the most promising directions for further research to address these issues.

Figure 5. Plot showing the number of publications included in the further screening review. The percentage of publications assigned to a sensing technology for each target analyte has been indicated.
3.2.1 Fire
Sensors in fire analysis detect, map and trace fire sources. Only one publication focused on fire, highlighting minimal current interest. The identified publication reviewed metal oxide (MOx) electrochemical sensors (Shalini Devi et al., 2021) for hazard-surveillance and risk investigation, including fire-hazards, chemical-warfare agents, oil-spills and explosives. MOx sensors, combined with airflow detectors and specific algorithms, have been used in mobile robots for fire analysis. These developments are made possible by novel nanoarchitectural patterns which enhance sensitivity and the possibility of multi-analyte sensing using array sensors and blended composites. The authors noted that improving thermal damage prevention, response, recovery times, and robot mobility is necessary to realize the potential of these devices.
In the UK, police and fire services collaborate on-site to determine fire causes, origins and behaviours, collecting evidence such as fire debris and electrical appliances for analysis (Cellmark, 2025a; Northamptonshire Fire and Rescue Service Fire Investigation FI, 2013). Central laboratories use gas chromatography-mass spectrometry (GC-MS) to identify accelerants, origin and fire behaviour (Abel et al., 2018). Fire investigation dogs are used to pinpoint traces of potential accelerants (Forensic Technology Center of Excellence, 2021) and thermal imaging cameras to identify hotspots and origins (Police Law Enforcement Solutions, 2018).
Current issues include the portability of GC-MS and the lack of specificity of canine detection. On-site detection is necessary to reduce delays caused by evidence backlogs (Forensic Technology Center of Excellence, 2021). Whilst portable GC-MS shows promise, further research is needed to confirm field accuracy (Forensic Technology Center of Excellence, 2021). Research into portable MOx sensors (Shalini Devi et al., 2021) offers a rapid alternative to central laboratory GC-MS testing and increased specificity over canine units.
3.2.2 Gunshot
For gunshot analysis, sensors help identify gunshot residue (GSR) on suspects or at a crime scene. Only 11 publications focussed on gunshot analysis, with electrochemical sensing being the most common (64% of papers) (Table 1). Shrivastava et al. (2021a) and Shrivastava et al. (2021b) described a handheld colorimetric sensor for rapid detection of lead and barium in GSR using polyvinyl alcohol capped silver nanoparticles and malonate capped gold nanoparticles respectively, ensuring rapid detection with no interference from other metal ions.

Table 1. Summary of included publications relating to the use of sensors in gunshot analysis, alongside details of technologies currently used by UK police and authorities for on-site gunshot analysis.
Electrochemical sensing studies have common themes of 3D printing and doped electrodes (the addition of impurities to modulate properties of the electrodes (Castro et al., 2020) alongside many review articles (36% of publications). Castro et al. (2020) detail the use of 3D-printed electrodes for simultaneous and semi-quantitative detection of lead and antimony (both present in GSR) without the need for sample preparation. Simultaneous detection reduces the numbers of tests needed to ensure identification of different types of GSR, reducing costs and time. Furthermore, the augmentation of electrode response through doping is shown to enable detection at lower concentrations. Promsuwan et al. (2020a) demonstrated enhanced electrocatalytic response with palladium doped glassy carbon microspheres, while McKeever et al. (2022) used voltametric electrodes with magnetic nanoparticles for propellant stabilizer detection. Several ad hoc reviews highlighted the benefits of advanced electrochemical methods such as single strip-based techniques over current heavy instrumentation, such as mass spectrometry (Shrivastava et al., 2021c; Harshey et al., 2021) due to their user-friendliness, sensitivity, and cost-effectiveness A third more general review highlighted the benefits of 3D-printing in electrochemical sensing as a powerful, affordable and accessible tool (Castro et al., 2022) emphasising the importance of these research endeavours reaching end users.
Chedid et al. (2023) discussed luminescence sensors for new nontoxic ammunition, which requires alternative detection techniques due to a lack of the conventional metals for detection of GSR. The presence of an inorganic luminescent chemical marker in GSR is shown to be effectively detected using square-wave voltammetry on a carbon paste electrode. Sensors able to detect these new residues will be essential moving forward and demonstrates the need for constant re-evaluation of the current target analytes and therefore techniques needed to detect them.
Senesi et al. (2021) provide an ad hoc review of laser-induced breakdown spectroscopy (LIBS) for gunpowder origin analysis looking at both prototype instruments and commercially available analysers. Key areas for future research focus on improving the portability and analysis speed of LIBS instruments outside the laboratory while maintaining high performance.
In the UK, police use colorimetric spot tests (Modified Griess Test and Sodium Rhodizonate Test) for on-site GSR analysis (Krishna and Ahuja, 2023), but these have low specificity and can degrade samples (Shrivastava et al., 2021c). Samples are often sent to labs for analysis using scanning electron microscopes (SEM), LIBS, and SERS (Cellmark, 2025b). A move towards field-deployable SEM can provide improvements to current investigative methods (Cellmark, 2025b).
To address these drawbacks, research detailed in the SR highlights promising advancements. Colorimetric sensors using capped nanoparticles (NPs) have been shown to reduce interference from other metal ions in samples (Shrivastava et al., 2021a; Shrivastava et al., 2021b), overcoming issues faced by current devices. Additionally, electrochemical methods under development demonstrate increased specificity compared to current spot tests, with the potential for simultaneous detection. These methods also offer benefits such as cheaper instrumentation and simpler user interfaces, thereby overcoming cost and training barriers (Castro et al., 2020; Castro et al., 2022).
3.2.3 Counterfeits/documentation
Sensors for counterfeit and documentation analysis help identify authentic and forged documents and develop anticounterfeiting labels. 23 (3%) publications were concerned with counterfeit and document analysis, with luminescence sensing technology being most commonly used (78% of papers, see Table 2).

Table 2. Summary of included publications relating to the use of sensors in counterfeits or documentation analysis, alongside details of technologies currently used by UK police and authorities for on-site counterfeit and documentation analysis.
Publications identified relating to the use of luminescence sensing have common themes of doped materials and ecofriendly materials along with ad hoc reviews of the literature. Five ad hoc reviews identified examined advances in materials and nanomaterials from other research areas being applied to counterfeit sensing technologies. For example, the use of magnetic nanoclusters with super-magnetic behaviour and smaller dimensions shows significant potential for anticounterfeiting with rapid and full reversible optical responses after magnetic field application (Nadar et al., 2021). However, the shelf-life of these nanoclusters remains uncertain, necessitating further research. Research exploring the aggregation-induced emission (AIE) phenomenon, known for its remarkable luminescence properties, has proven successful in applications such as anticounterfeiting banknotes and confidential documents (Yan et al., 2021). Tetraphenylethene derivatives, exhibiting fluorescence under ultraviolet irradiation but reverting to white colour within 1 min of excitation, demonstrate this effectiveness. Carbon dots (CDs) have also been discussed with a review highlighting their superior fluorescence, low-cost, non-toxic and colour-tuneable nature (Verhagen and Kelarakis, 2020). For example, CDs can be incorporated into inks capable of functioning as novel barcodes and nanotags for authentication and anticounterfeit applications.
The doping of materials has improved detection capabilities. Kamal and Saif (2020) detail the use of barium tungstate doped with terbium ion green nanophosphor and Naik et al. (2020) discuss the use of nitrogen-doped carbon dot threads as fluorescent ink in potential anti-counterfeiting applications.
The need for environmentally friendly and non-toxic materials were key research themes (Szczeszak et al., 2020). Lanthanide-doped SrF2 nanoparticles combined with luminescent cellulose fibres have been developed for anti-counterfeiting applications, where they are invisible under ambient light but bright green under near-infrared light (Szczeszak et al., 2020). This use of organic fibres is both beneficial to the environment and reduces associated costs with material manufacture. Abdollahi et al. (2022) detail the use of metal-free and eco-friendly photoluminescent polymer nanoparticles based on oxazolidine as a sustainable alternative for anticounterfeiting.
Tomar et al. (2023) present a broad overview of banknote security materials and analytical techniques for detecting counterfeits. They discuss new anti-counterfeiting materials and fluorescent nanoparticles that can be used as anti-counterfeiting inks with technologies such as Raman spectroscopy.
Publications not using luminescence technologies included the use colourimetric techniques to produce security ink for anticounterfeiting labels making it easier to detect fakes and trace their origin or dispersal (Kumar and Singh, 2023). 1,8-naphthalimide-based blue emitters non-covalently doped on silica have been demonstrated, with excellent results, in real-world situations. Infrared (IR) technology has also been demonstrated alongside novel chemometric methods to provide successful forensic analysis on printer inks (Paxton et al., 2021) and authentication for banknotes (Nurfarhana et al., 2022).
Counterfeit detection involves examining security features such as watermarks, holograms, and special inks. The UK police currently use various tools, including ultraviolet (UV) and infrared (IR) light, to check for security features that are invisible under normal lighting (College of Policing, 2017). However, these methods can produce false positives or negatives due to environmental factors or wear and tear and are limited to features specifically designed to be UV or IR reactive. Magnetic ink detectors are also employed to identify the presence of magnetic inks found in genuine banknotes and important documents, which are typically absent in most counterfeits (Regula Forensics, 2025). These detectors can be affected by nearby electronic devices or metal objects, and sophisticated counterfeiters increasingly use magnetic inks that can deceive them. Portable spectrometers, such as the Regula 4,115 (Regula Forensics, 2025), are used for the express verification of banknotes, featuring a built-in camera and various light sources for a comprehensive examination of security features. However, these devices are costly and require significant training for proper use.
To address these challenges, recent research highlighted in the SR points to promising advancements in colourimetric and luminescent sensing. These advances involve techniques such as doping (Kamal and Saif, 2020; Naik et al., 2020) and the use of environmentally friendly materials (Szczeszak et al., 2020; Abdollahi et al., 2022) to enhance detection capabilities and reduce costs, respectively. Additionally, magnetic nanoclusters exhibit super-magnetic behaviour compared to conventional magnetic inks (Nadar et al., 2021). Their distinct and durable magnetic properties make them difficult to replicate. However, further research is needed to commercialize these technologies.
3.2.4 Pollutants
With increasing environmental concerns, monitoring illegal discharges and pollutants is crucial. Among the 50 (6%) publications on pollutant analysis, electrochemical and luminescence technologies dominated, accounting for 70% (Table 3). Key themes identified included eco-friendly materials, dual detection (combining two sensing technologies for enhanced detection), law-enforcement approval and portability.

Table 3. Summary of included publications relating to the use of sensors in pollutant analysis, alongside details of technologies currently used by UK police and authorities for on-site pollutant analysis.
To reduce environmental and other costs, the use of eco-friendly materials is important, particularly for large-scale production. Senra and Fonseca (2021) demonstrated the potential for replacing expensive tyrosinases (type-3 copper metalloenzymes) with cost-effective freshwater ciliates, rapid-growing unicellular microeukaryotes. They employed virtual screening to compute binding energies between 3D models of these homologs, paving the way for more economical alternatives. Additionally, paper-based (Noviana et al., 2019) and cellulose-based (Kamel and Khattab, 2020) biosensors were highlighted as environmentally friendly alternatives to traditional substrates.
Dual detection sensors simultaneously measure multiple parameters or analytes by integrating different sensing technologies or methods, enhancing accuracy, sensitivity, and versatility across various applications (Lan et al., 2020). Zhang et al. (2022a) ad hoc review discussed using thin layer chromatography (TLC) coupled with SERS for on-site multi-component detection. The TLC chromatographic plate is used for high-throughput separation with SERS enabling quantitative detection of mixtures. However, further work is needed to mature the technology for on-site applications, including the use of porous materials or polymers to enhance separation efficiency and the application of machine learning to improve the accuracy of quantitative signal information. Immunochromatographic assay strip readers combining immunoassay and chromatography techniques were also noted in two papers demonstrating their ability to extend the range of detectable analytes (Wu et al., 2021a) and increase the speed of detection (Lan et al., 2020).
Pena-Pereira et al. (2021) present an extensive ad hoc review of miniaturised analytical methods for detecting emerging environmental contaminants (e.g., illicit drugs, surfactants and personal care products). They highlight opportunities for low-cost, field deployable devices with the possibility for creating big data sets at low cost, and the development of screening methods to be used before more expensive traditional sensing methods (e.g., gas chromatography-mass spectrometry) are used to validate results. However, challenges include law enforcement approval, stability of sensing elements and few commercially available set-ups. Approval from law-enforcement agencies is key in moving developed sensors from small to large-scale use.
For identifying and measuring pollutants at crime scenes, accidents, or environmental incidents UK government organisations currently use instruments like GC-MS, Raman spectrometers, photoionization detectors (PIDs) and x-ray fluorescence analysers (XRF) (Department for Environment, Food & Rural Affairs, 2025; Guidance, 2014). Portable GCs require specialised training, regular maintenance and high initial and operational costs (Department for Environment, Food & Rural Affairs, 2025). PIDs are effective for detection of volatile organic compounds but not other pollutants (Zimmerman et al., 2020). XRF typically analyses only the surface layer of a sample, with interference from other elements and potential radiation exposure posing additional concerns (Department for Environment, Food & Rural Affairs, 2025).
Recent research highlighted in the SR indicates promising advances to tackle these current challenges. A crucial focus lies in addressing cost concerns by exploring more economical alternatives, both in material selection (Senra and Fonseca, 2021; Noviana et al., 2019; Kamel and Khattab, 2020) and screening methods (Pena-Pereira et al., 2021), which have shown promise. Additionally, current shortcomings in the capacity of tests to detect multiple target analytes have been emphasised. Dual detection methods have emerged as a solution, enhancing the range and speed of analyte detection, though further research is needed to mature these technologies for practical use (Zhang et al., 2022a; Wu et al., 2021a).
3.2.5 Body fluids
Body fluid analysis, encompassing a wide range of analytes from salivary amylase to DNA, is crucial for combating crime. 56 (7%) publications were concerned with body fluid analysis, with all sensing technologies being fairly evenly represented (Table 4). Key themes identified included the importance of ecofriendly materials and dual detection.

Table 4. Summary of included publications relating to the use of sensors in body fluid analysis, alongside details of technologies currently used by UK police and authorities for on-site body fluid analysis.
Paper-based methods show promise for on-site analysis of mitochondrial DNA and salivary amylase (Dhar et al., 2021). One paper-based device using core-shell nanoparticles identifies saliva by showing a visible colour change when the shell is disrupted by alpha-amylase exposure (Adhikary and Banerjee, 2021). For mass on-site analysis further testing on human saliva samples is needed. Kamel and Khattab (2020) discuss recent advances in cellulose-based biosensors for medical diagnosis. The use of these alternatives present renewable, less toxic and cheaper solutions to existing sensing devices.
Another key area of research is in the coupling of sensing technologies for a dual detection sensor. One example is the development of a grating-coupler as a transducer to excite surface-plasmon combined with fluorescence to identify DNA sequences creating quick and sensitive on-site analysis potential (Kasry et al., 2021). Lateral flow immunoassays (LFIAs) offer rapid, cost-effective on-site applications, and have become widespread in recent years (Nardo et al., 2021). In their ad hoc literature review, Nardo et al. (2021) report that LFIAs have been developed to analyse prostate specific antigens (Kishbaugh et al., 2019), salivary amylase (Kishbaugh et al., 2019) and human haemoglobin (Murahashi et al., 2020).
UK police use various sensors to detect body fluids at crime scenes. Luminol and bluestar cause a luminescent reaction upon contact with haemoglobin, making bloodstains visible even if they e been cleaned or are not visible to the naked eye (College of Policing, 2017; Forensics Library, 2024). There are issues with false positives from certain metals and cleaning agents, DNA degradation complicating subsequent analysis, and the short-lived luminescent reaction making it difficult to document complex crime scenes effectively (College of Policing, 2017; Forensics Library, 2024). Rapid Stain Identification (RSID) tests detect specific body fluids like saliva, semen, and urine using specific markers like prostate-specific antigen for semen (Forensic Body Fluid Analysis Services, 2024; Harbison and Fleming, 2016). RSID tests, while specific, can still suffer from cross-reactivity and sensitivity issues with the presence of other body fluids (Harbison and Fleming, 2016). Portable DNA analysers, such as the RapidHIT ID System (Thermo Fisher Scientific, 2024), can be useful in time-sensitive investigations in helping identify individuals from biological samples (Forensics Library, 2024). Issues of cost and complexity in the operation of portable DNA analysers can be a limitation for smaller police departments alongside sensitivity to environmental conditions causing a reduction in performance and accuracy (Forensics Library, 2024).
Recent research highlighted in the SR indicates promising advancements to tackle current challenges. Research into eco-friendly materials has shown promise in paper-based DNA detection methods, which can reduce costs (Dhar et al., 2021). Additionally, the use of dual detection techniques has been explored, demonstrating potential for rapid and sensitive on-site DNA analysis (Kasry et al., 2021). Improvements to RSID tests are also being investigated, with methods such as core-shell nanoparticles being researched for rapid colourimetric testing (Adhikary and Banerjee, 2021). However, these methods require further testing on human samples before they can be commercially utilised.
3.2.6 Explosives
Sensors in explosives analysis facilitate the (proactive) identification of potential explosive threats, such as during the screening of large crowds. 83 (10%) publications were concerned with explosives analysis, with luminescence sensing technology being the most commonly used (47% of papers, see Table 5). Key themes identified included dual detection, selective detection, 3D printing and portability of sensors.

Table 5. Summary of included publications relating to the use of sensors in explosives analysis, alongside details of technologies currently used by UK police and authorities for on-site explosives analysis.
Dual detection enhances sensitivity and selectivity, with Cao et al. (2022) proposing the combined use of colourimetric and fluorescent sensing with a carbon dots/titanyl sulfate (CDs/TiOSO4) sensing system for peroxides. Su et al. (2022) also demonstrate colourimetric sensing alongside luminescence using a Pt (II) terpyridyl complex-based sensing platform for perchlorate detection in water, soil and air. Molecularly imprinted polymers (MIPs) offer artificial recognition sites with a fluorescent composite of carbon dots (CDs) for on-site analysis (Nadar et al., 2021). The use of these dual detection methods limits the selectivity from other strong oxidants which could otherwise generate false positives (Cao et al., 2022).
3D printing rapidly produces electrodes for electrochemical sensing. For example, Cardoso et al. (2020) compared 3D printing pens and desktop printers for TNT detection. A key advantage of 3D printed electrodes is that new electrode surfaces can be generated by polishing thereby enabling reuse of the sensor–another advantage over chemically-modified electrochemical sensors (Cardoso et al., 2020). Urbanová and Pumera (2020) looked at the use of 3D printed titanium electrodes and Castro et al. (2022) completed an ad hoc review of 3D-printed electrochemical sensors showing the great promise they have for portable, on-site analysis.
Furthermore, continuous real-time monitoring of many explosives has been explored using a free-standing thin-film sensor relying on the catalytic decomposition of the explosive and its heat effects (Ricci and Gregory, 2021). Senesi et al. (2021) reviewed laser-induced breakdown spectroscopy (LIBS), a chemical elemental analysis technique which is found to be a sensitive and selective sensing technology suitable for on-site measurement.
In investigating crime scenes with potential explosives, UK police currently use a variety of on-site devices. Portable explosive detectors, such as ion mobility and mass spectrometers, offer rapid detection but face issues like high-cost, false positives from molecules with similar structures, sensitivity to environmental conditions like humidity and temperature and a limited range of detectable compounds, particularly newer or less common explosives (ENFSI, 2021). Canine units can be used with their high sensitivity to detect a range of explosive materials quickly (NPSA, 2025). Issues of high training costs, fatigue and distraction and the potential for false positives or false negatives due to masking odours (NIST, 2025). Colourimetric kits provide simple and immediate results but lack specificity and their storage and shelf-life can have a large impact on their effectiveness (ENFSI, 2021). Fluorescence and Raman spectroscopy provide non-destructive analysis utilising compounds unique spectral fingerprints. These technologies face limitations due to their complexity, high costs, the need for trained personnel and potential interference from other substances (ENFSI, 2021).
Recent research highlighted in the SR indicates promising advancements to address current challenges. Issues of high-cost, false positives and range of target analytes within current sensors are seen to be tackled by research within identified SR papers with dual detection gaining significant attention (Su et al., 2022; Nadar et al., 2021). Dual detection is also seen to provide an improvement to the lack of specificity associated with current colourimetric tests (Cao et al., 2022; Su et al., 2022). Additionally, the 3D printing of electrodes in electrochemical sensors is being explored to reduce the costs of current sensing technologies (Castro et al., 2022; Cardoso et al., 2020). Continuous real-time monitoring, as presented in the SR literature, offers a substantial improvement over current canine units by reducing costs and training time (Ricci and Gregory, 2021).
3.2.7 Poison/toxin
Sensors for poison and toxin analysis are crucial for safeguarding health, protecting the environment and responding to hazardous material emergencies. 99 (13%) publications were concerned with poison/toxin analysis, with luminescence sensing technologies being the most commonly used (41% of papers, see Table 6). Key themes of eco-friendly materials, fast response and on-site technologies have been highlighted in identified papers with development of recognition elements playing a key role in achieving these.

Table 6. Summary of included publications relating to the use of sensors in poison or toxin analysis, alongside details of technologies currently used by UK police and authorities for on-site poison and toxin analysis.
The use of AIE phenomenon on filter paper strips detecting volatile poisons and pesticides has been demonstrated, though further research is needed for detecting poisons in body fluids and universal AIE probes for group recognition (Yan et al., 2021). A recognition element that detects classes of poisons would reduce sensing time and cost (Senra and Fonseca, 2021). An ad hoc review (Nardo et al., 2021) of LFIAs (also discussed above) details their use in the rapid on-site detection of viruses (Couturier et al., 2020; DeMers et al., 2020), toxins (Wu et al., 2020a; Li et al., 2020d; Bever et al., 2020; Pan et al., 2020; Xu et al., 2019), mycotoxins (Li et al., 2019a; Huang et al., 2020; Li et al., 2019b; Wang et al., 2021b; Wang et al., 2020b; Byzova et al., 2020), bacteria (Zhuang et al., 2020; Ilhan et al., 2021; He et al., 2019; Anfossi et al., 2018; Wang et al., 2019), allergens (Galan-Malo et al., 2019; Zhang et al., 2021b) and pesticides (Ge et al., 2020; Cevallos-Cedeño et al., 2021; Wu et al., 2019; Chen et al., 2020a). Paper-based on-site methods for pathogen detection using isothermal nucleic acid amplification are demonstrated (Dhar et al., 2021). Fast response time has been demonstrated using two fluorescent probe molecules (4-mercaptocoumarins) in a test strip to detect mustard gas and its analogues with a 3 min response time and high sensitivity (Xue et al., 2021).
Another key theme was sensing of gaseous target analytes. Shin et al. (2020) developed a sensitive colorimetric gas sensor with a smartphone-based analysis for real-time quantitative detection of bacterial-derived ammonia gas, helping determine the postmortem interval (PMI). Such on-site sensing overcomes previous challenges of bacterial growth whilst the body is being moved which can produce false PMIs. Multiplexed gas sensing is discussed with several papers looking at the use of bifunctional fluorescent probes. These probes, equipped with two sensing sites, yield two distinct fluorescence responses upon exposure to either of the two target analytes, ranging from various nerve agent stimulants to mustard gas and phosgene (Feng et al., 2023).
The detection of poisons and toxins to combat crime presents a wide range of target analytes. UK police and other emergency responders currently employ a broad range of technologies for rapid and accurate on-site detection. Portable spectrometers such as Thermo Scientific’s TruDefender and FirstDefender use infrared spectroscopy but are costly and complex (Thermo Scientific, 2024). Biosensors based on electrochemical, optical or piezoelectric principles are common in use providing rapid results (Naresh and Lee, 2021; Justino et al., 2017). Challenges such as environmental instability (fluctuations in pH, humidity, and temperature), interference from complex sample matrices, and a limited detection range persist when attempting to simultaneously detect multiple analytes (Justino et al., 2017). Multiplex immunoassay platforms are also used allowing simultaneous detection of multiple toxins in a single sample by using antibodies to bind to specific toxins making them highly specific. However, there are issues of interference and a limited detection range with many potential unknown target analytes (Mégarbane et al., 2020; Pöhlmann and Elßner, 2020).
Recent research highlighted in the SR indicates promising advancements to address current challenges. Current issues such as high costs and a limited range of detectable target analytes are being tackled by papers identified within the SR focussing on the use of AIE probes for group recognition (Yan et al., 2021) and cost-effective paper-based methods (Dhar et al., 2021). The development of these technologies is expected to significantly impact not only poison and toxin detection but also the detection of other target analytes.
3.2.8 Fingerprints
Fingerprint analysis is a key tool in modern law enforcement, providing reliable and efficient identification of individuals. 108 (14%) publications concerned fingerprint analysis, with luminescence sensing technologies being the most commonly used (79% of papers, see Table 7). Key themes include the development of environmentally friendly, non-toxic sensors and the use of nanomaterials for enhanced fingerprint sensing.

Table 7. Summary of included publications relating to the use of sensors in fingerprint analysis, alongside details of technologies currently used by UK police and authorities for on-site fingerprint analysis.
The development of environmentally friendly, non-toxic sensors was a key issue identified for mass production. Azman et al. (2021) proposed using a lipase from Candida rugosa (CRL) as a greener option for fingerprint analysis on wet substrates. Although CRL is used in various scientific applications (Prlainović et al., 2013; Che Marzuki et al., 2015; Mohamad et al., 2015), its use in fingerprint visualisation is limited, presenting an exciting research opportunity.
Recent advances in the use of nanomaterials for sensing can be applied to fingerprint sensing for many benefits. A review of magnetic nanoparticles (MNPs) to conjugate with quantum dots (QDs) for fluorescence properties has been presented (Nadar et al., 2021). Unlike traditional powders used, the small size of MNPs were found to be efficient in selectively binding to fingerprints and not the background. Gold nanoparticles on fibrous nano-silica enhance ridge details and sweat pores on various surfaces with properties of low-cost, easy preparation, chemical stability and great affinity to finger residues (Wei and Cui, 2021). Ansari et al. (2022) review applied nanomaterials and luminescent Ln3+ NPs/upconversion (UC) NPs which provide higher contrast, sensitivity and selectivity which is lacking in most of the traditional fluorescent nanomaterials used. However, more studies are needed to improve the efficiency, performance, surface-functionality and biocompatibility of these Ln3+ NPs/UCNPs for fingerprint recognition.
Carbon dots (CDs) present exceptional characteristics such as high fluorescence, non-toxicity, eco-friendliness, stability and cost-effectiveness compared to traditional methods. Shabashini et al. (2021) present an ad hoc review of publications relating to the application of CDs but of importance here is the enhancement of fingerprint visualisation, using magnetic composite powder CDs, due to the abundant surface hydrophilic groups (Ding et al., 2021a). Low-cost, superparamagnetic fluorescence performance and excellent safety makes these CDs suitable candidates for on-site visualisation. However, issues remain to transition from proof of concept to field application.
For on-site fingerprint detection the UK police use various mobile biometric devices to capture fingerprints and perform identity checks in real-time (Press Release, 2018). NEC MobileID (Fingerprint Identification, 2024) allows officers to capture fingerprints while Cross Match SEEK Avenger (Mobileidworld, 2013) captures fingerprints, iris scans and facial images. Both devices enable real-time identification cross-referencing with the UK’s central fingerprint databases (e.g., IDENT1 System (Press Release, 2018)). Fixed systems in police stations, like Morpho Livescan by IDEMIA (IDEMIA, 2025) and Crossmatch L SCAN (Neurotechnology, 2025), offer higher quality capturing. However, the use of on-site detection is preferable to reduce trips to and from police stations improving efficiency (Press Release, 2018). Many kits are currently used for developing latent fingerprints at crime scenes. These include powders and lifting tapes, which are then analysed further in a lab or using mobile devices with Automated Fingerprint Identification System (AFIS) access. The choice of powder depends on the surface, with common types being aluminium, magna flake, black granular, and black magnetic powders (Bandey and Gibson, 2006). Traditional powder lifting technologies face limitations, including sensitivity to environmental conditions, surface compatibility, DNA degradation due to chemicals used and the need for extensive training to ensure proper application and interpretation (NCJRS Virtual Library, 2001; Defence Science and Technology Laboratory, 2022).
Recent research highlighted in the SR indicates promising advancements to address current challenges. Improvements to MobileID devices were not captured within this SR. A key theme in the papers identified through this SR was the use of nanomaterials instead of traditional powders for fingerprint detection. These nanomaterials offer enhanced sensitivity and selectivity, overcoming issues related to environmental conditions (Ansari et al., 2022; Nadar et al., 2021). However, further research is needed to improve surface functionality and biocompatibility to transition these innovations from proof of concept to widespread field application (Ansari et al., 2022; Shabashini et al., 2021; Ding et al., 2021a).
3.2.9 Food safety
For food safety, sensors are essential for maintaining the integrity of the supply chain, protecting public health and ensuring compliance with regulations. 168 (22%) publications concerned food safety, with immunoassay sensing technologies being the most commonly used (36% of papers). The remaining papers were represented by a fairly even spread of sensing technologies (Table 8). Key themes discussed include the use of dual detection, nanomaterials and portability.

Table 8. Summary of included publications relating to the use of sensors in food safety analysis, alongside details of technologies currently used by UK police and authorities for on-site food safety analysis.
Tasangtong et al. (2023) discuss inkjet-printed paper devices for rapid, portable and eco-friendly formaldehyde analysis in foods. Similarly, 3D-printing of graphene-polylactic acid electrodes for atropine detection in beverages offers low-cost, reproducible, large-scale sensor production and shows great promise for developing other electrochemical sensors for analytes commonly found at crime scenes (Joao et al., 2021).
Development of dual detection sensors was seen as key across publications. Roushani et al. (2021) discuss a double recognition strategy using MIP and aptamer on a carbon electrode to sense ractopamine, a molecule commonly used in livestock feed, sometimes inappropriately or excessively. This strategy can be extended to other target analytes by the simple exchange of the relevant aptamer. The paper also highlights antibiotic degradation detection in milk using silver nanoparticle-decorated TiO2 for solid-phase microextraction (SPME) and SERS (Jing et al., 2021). SPME is a new sample preparation technique that simplifies extraction and reduces sample loss. Silver nanoparticles have greater SERS activity than traditional silver sol. In combination, SPME-SERS provides rapid on-site detection.
Antibody-based sensing technologies are common in food safety analysis offering low-cost and rapid detection. Development of a fluorescent immunochromatographic strip assay based on a chlorpheniramine (CPM) antibody in the detection of CPM, a harmful illegal additive in teas and health foods is discussed (Zhou et al., 2021). A LFIA based on a fluorescence and gold nanoparticles labelled antibody for Tadalafil (a banned additive found in beverages) recognition is also presented (Suryoprabowo et al., 2021). The strip is observed under ultra-violet light and can be completed within 10-min making it perfect for on-site analysis.
The responsibility of food safety analysis tends to rest with local authorities such as environmental health officers (EHOs) and the Food Standards Agency (FSA). With many potential target analytes there are a vast array of technologies currently employed. These include portable spectrometers such as Raman spectrometers (TRUSCANRM, 2025) and IR spectrometers (PerkinElmer, 2025) to identify contaminants and potential adulterants in food products. These products present issues of initial high investment costs and personnel training with the need for special sample preparation for some IR readings. Rapid testing kits, like ATP (adenosine triphosphate) Testing Kits (Hygiena, 2025) that measure cleanliness and Lateral flow devices (LFDs) (Food Allergen Testing, 2025) for rapid, on-site pathogen detection, often face issues of specificity which can result in false positives or negatives. Chemical test strips detect residues such as pesticides, heavy metals, and other contaminants but often suffer from limited sensitivity, provide only semi-quantitative results and require specific storage conditions (Merck, 2025). This is due to their small surface area and reaction zone which restrict the amount of analyte that can interact with reagents, and the absence of amplification steps commonly used in lab-based methods. UV lights are used to check hygiene standards and detect contamination with biological residues but these only work on smoother non-porous surfaces and require additional safety precautions due to potential prolonged UV exposure (Coleparmer, 2025).
Recent research highlighted in the SR indicates promising advancements to address current challenges. Issues with the high cost and extensive training requirements for current spectrometers are being addressed by developing dual detectors (Roushani et al., 2021; Jing et al., 2021). Some identified dual detectors achieve similar levels of selectivity but require further development to match the sensitivity of current devices. Additionally, inkjet and 3D printed electrochemical devices are being researched as cost-effective, mass-producible alternatives (Tasangtong et al., 2023; Joao et al., 2021). Improvements in rapid testing kits also focus on dual detection, enhancing both specificity and sensitivity (Roushani et al., 2021; Zhou et al., 2021; Suryoprabowo et al., 2021).
3.2.10 Illicit drugs
Sensors play a pivotal role in illicit drug analysis for law enforcement, forensic investigations, public health and safety, enabling their identification, detection, and monitoring. 281 (36%) publications concerned illicit drug analysis, with electrochemical sensing technologies being the most popular (49% of papers). Colourimetric, immunoassay, luminescence and Raman sensing technologies represent an even share of the remaining publications. As shown in Table 9, the detection of some illicit drugs (e.g., stimulants) has received more attention than others (e.g., hallucinogens). The vast array of technologies explored for illicit drug analysis presents numerous opportunities for further research. Consequently, the key themes identified in the literature are summarized below.

Table 9. Summary of included publications relating to the use of sensors in illicit drug analysis, alongside details of technologies currently used by UK police and authorities for on-site illicit drug analysis.
3.2.10.1 Portability, Affordability and ease of use
Key to successful implementation of roadside drug testing is portability, with many review papers (Teymourian et al., 2020; Ren et al., 2021; Moradi et al., 2022) suggesting further work that needs to be done to achieve this.
SERS technology on a paper-based substrate enables on-site detection, such as for fentanyl citrate in serum and urine. This method utilises a paper-based SERS substrate embedded with chloride ion treated gold nanospheres, with SERS spectra collected using a portable Raman spectrometer (Han et al., 2021).
The development of a fluorescence immunochromatographic assay (FICA) strip reader provides low cost, user-friendly, highly sensitive and rapid detection capabilities, enabling convenient on-site testing (Wu et al., 2021a). This sensor incorporates a photoelectric adjustment system, leveraging the linear correlation between fluorescence and excitation light intensity, enabling precise tuning of the excitation light intensity. Such adjustment broadens the potential detection range for target analytes. This technology will have implications in many sensing devices for various target analytes on-site.
Truta et al. (2020) show that electrochemical methods can rapidly determine drugs with rapid, sensitive, selective detection in complex human matrices (e.g., blood, urine or saliva) and are easily miniaturised for on-site use. However, the electrochemical sensing of illicit drugs so far has been limited to academic research–no commercial market appears to have been conquered yet. Square-wave voltammetry (SWV) is the most widely used voltammetry technology for facile and rapid quantitative sensing of illicit drugs (De Rycke et al., 2020). The choice of electrode, especially the working electrode, can have a large impact on a sensor’s sensitivity. De Rycke et al. (2020) predict that carbon paste electrodes will further gain popularity and be used in most electrochemical sensors for the detection of illicit drugs as they are flexible in design with the possibility for miniaturisation. The presence on the market of cheap and disposable electrochemical cells, namely, screen-printed electrodes, has made feasible the creation of effective devices for the quantification of illicit drugs in an on-site screening test (Zanfrognini et al., 2020).
Nanomaterials, with their unique properties and low cost, enhance electrochemical sensor sensitivity for detecting drugs in low concentrations (Truta et al., 2020). However, future electrochemical sensor development needs to consider the implementation of biocompatible and environmentally friendly materials (Klimuntowski et al., 2020). Many articles discuss the potential of paper-based portable sensors to aid police enforcement (Noviana et al., 2019; Sha et al., 2020; Han et al., 2021; Ameku et al., 2021; Rocha et al., 2021a; Ribeiro et al., 2020; Dias et al., 2021; Saisahas et al., 2022a; Pholsiri et al., 2023; Ataide et al., 2020; Solin et al., 2023; Alder et al., 2021; Mao et al., 2021c). Cellulose is also discussed as a potential low-cost, environmentally friendly supporting material for biosensors, whose high number of hydroxyl functional groups provide the ability for the construction of novel materials for new advanced biosensor-based applications (Kamel and Khattab, 2020).
A pivotal review article surveys literature spanning the last 2 decades, focusing on optical and electrochemical sensing technologies for analysing methamphetamine (Khorablou et al., 2021). Many low-cost sensing technologies have been outlined from fluorescence to electro-chemiluminescence highlighting the range of existing and potential low-cost sensing platforms for methamphetamine. Application of these developed sensing technologies to other drug sensing provides a low-cost, high-yield route for further sensing development.
To reduce errors of inference by non-experts (i.e., most police officers do not have chemistry degrees), on-site drug tests would need to be simple to operate and interpret. Therefore, recent publications for on-site testing have focused on the simplification of current systems. Research includes the design of data processing software to simplify measurements (Noviana et al., 2019), potential for smartphone control of sensors (Madani-Nejad et al., 2023), and the development of smartphone apps for interpreting data (Garcia-Cruz et al., 2020).
3.2.10.2 Matrix tolerance and interferents
Roadside drug sensors will require detection in a human matrix which introduces issues of interference and may require sample pre-treatment (Zanfrognini et al., 2020). Therefore, testing in a greater range of potential matrices to make technologies field ready is attractive (Papadopoulos et al., 2020). Electro-chemiluminescent screening using a Nafion film on a glassy carbon electrode is a sensing technique that requires little to no extraction or sample preparation. This provides ideal implementation for on-site screening in serum, urine and saliva (Dokuzparmak et al., 2021). Saliva-based drug detection is of particular interest for on-site screening, as unlike blood assays, it does not require invasive sample collection (Truta et al., 2020). Selective discrimination of illicit drugs and their metabolites is a key theme to be explored for many sensing devices (Gill et al., 2020).
3.2.10.3 Specificity
For roadside drug testing, high specificity is needed to ensure the fair apprehension of suspects. Many drugs, due to degradation (Truta et al., 2020), are identified through their metabolites in body fluids (Wille and Elliott, 2021). Technologies outlined to improve specificity include the use of novel recognition elements such as aptamers (Ahmed et al., 2020) – which provide a cheap method to bind to target groups enabling sensing–and the combination of two sensor elements. For example, molecularly imprinted polymers and graphene quantum dots as a signal amplifier offer a revolution in sensor design by increasing surface area and conductivity (Khorablou et al., 2021).
3.2.10.4 Multiplexing
Multiplex detection is increasingly important, allowing simultaneous analysis of multiple analytes (Mani et al., 2021; De Rycke et al., 2020; Klimuntowski et al., 2020). This will be vital for on-site drug tests as there are many potential target drugs that need to be identified. Paper-based sensors have the potential for multiplexed detection and will be important for on-site application (Noviana et al., 2019). Lateral flow tests provide rapidity, simplicity, relative cost-effectiveness, and the possibility to be used by non-skilled personnel. However, drawbacks include possible cross-reactivity, matrix interference and (easy) manipulation by users (e.g., the use of soda to cause a false positive). A lateral flow immunoassay combines multiple lines to increase detection capability, where each line contains a specific recognition element for different target analytes. However, the addition of multiple recognition sites and therefore lateral flow lines requires an increased sample volume, higher fabrication costs and increased reagent use (Nardo et al., 2021).
The importance of illicit drug analysis in combating crime is evidenced by the volume of publications identified and the variety of sensing technologies used. From the above analysis it is evident that portability, specificity, matrix tolerance and multiplexing are key components that require further research for a commercial on-site drug test. It is observed that low-cost, simply operated, portable devices are being developed, including paper-based devices requiring little to no extraction and sample preparation. Advances are also being made to increase detection limits and reduce costs, with a focus on saliva-based detection. However, more research is needed particularly in the discrimination between certain target analytes including amphetamine type stimulants. This is particularly critical as often in illicit drug analysis the target is unknown and therefore determination of its exact identity is important. Portable sensor development should involve environmentally friendly materials and the use of nanomaterials alongside the development of software for the extraction of data. The specificity of the sensor will be vital and an understanding of drug concentrations, half-life and metabolites in the matrix will also be key. Electrochemical sensing, particularly SWV, has yet to impact the commercial market for mass on-site detection but its relative cheapness, ease of use and sensitivity make it ideal.
With the focus on low cost testing we are looking at detecting drug offenses on-site. For example, identifying those under the influence with drug driving, drink spiking and identifying samples rapidly. Specific drug detection kits used by the UK police for on-site analysis vary depending on factors such as region, budget of the police force and advancements of technology (Evidential Drug Identification Testing, 2023).
UK police use various kits for on-site drug analysis, such as NIK tests for powders, pills, or liquids (Symonsbergen et al., 2018). These reagent tests including Marquis (MDMA), Mandelin (MDMA, opiates), Scott (cocaine), and Simons (MDMA, methamphetamine) utilize colorimetric methods and are popular for their ease of use and quick results. However, they have limitations. Their sensitivity and specificity are restricted, leading to potential false positives or negatives due to interference from other substances. This means they may miss low concentrations of drugs or misidentify substances, necessitating confirmatory testing for accurate results (ProPublica, 2025). Additionally, these tests typically only cover a limited range of drugs, potentially missing emerging substances. This necessitates the use of multiple tests or techniques to accurately identify the presence and type of drugs in a sample, which can be time-consuming and resource-intensive for law enforcement agencies.
For drug driving analysis in saliva and sweat, the UK police currently use the Securetech & Dreiger (DrugWipe (DrugWipe, 2025)) sensor to detect cannabis and cocaine. DrugWipe employs a lateral flow immunoassay detection system based on the principle of competitive binding. An anti-drug antibody binds either to a protein conjugate line, forming a visible test line, or to the target drug, if present, reducing the appearance of the test line (DrugWipe, 2025). This technology has type approval (Testler, 2025), indicating it meets the specifications required by the Home Office. However, having roadside evidential screening that allows the analysis to be used as court evidence would be beneficial for the police.
Therefore, current on-site drug detection kits provide only preliminary results, requiring confirmatory testing by certified laboratories - often using high-performance liquid chromatography-mass spectrometry (HPLC-MS) - for legal purposes, leading to additional costs and delays in proceedings (ProPublica, 2025).
Recent research highlighted in the SR indicates promising advancements to address current challenges. The need to detect a broader range of drugs is addressed with research into dual detection methods, such as FICA strip readers, enabling the detection of multiple drugs simultaneously (Wu et al., 2021a). Lateral flow immunoassays are being investigated for multiplexing capabilities, although further research is required to reduce matrix interference (Nardo et al., 2021). Enhancements in specificity are being explored through the use of aptamers, MIPs and quantum dots (Khorablou et al., 2021; Ahmed et al., 2020). To overcome current issues related to matrix tolerance, technologies such as electro-chemiluminescent screening are also being researched (Dokuzparmak et al., 2021).
3.2.11 Other
Only 35 (5%) publications meeting the inclusion criteria did not focus on specific target analytes, affirming the appropriateness of chosen key analyte categories. These publications included a fairly even split of the sensing technology categories (Tables 9, 10).

Table 10. Summary of included publications relating to the use of sensors in target analytes not covered by the outlined categories.
Many publications focussed on the detection of radioactive materials (Marques et al., 2023; Kim et al., 2022). Studies highlighted the advantages of silicon photomultipliers in beta and gamma detectors over current radiation monitors used at seaports, citing their lightweight, compact design, and lower power consumption (Marques et al., 2023). Emphasis was placed on developing environmentally friendly alternatives to current sensing technologies, including sustainable printed electrochemical platforms (Kongkaew et al., 2022) and paper-based microfluidic devices (Musile et al., 2021). Portability emerged as a key theme, with innovations such as a mobile fibre-optics Raman spectrometer addressing challenges of dispersive Raman spectroscopy and potentially enabling mobile spectroscopy applications, such as for elephant ivory (Parungao et al., 2022). Additionally, several ad hoc reviews were identified (Costanzo et al., 2023; Abdelkader et al., 2022; Abdulhussein et al., 2022; Alves et al., 2021; Alberti et al., 2023; Fakayode et al., 2023; Batool et al., 2022b; Hardy et al., 2022; Mandal and Tewari, 2022; Kulkarni et al., 2022; Geballa-Koukoula et al., 2023), covering diverse topics such as 3D electrodes in electrochemical sensing (Abdelkader et al., 2022), SERS studies on saliva (Hardy et al., 2022) and advances in SERS for molecular sensing (Mandal and Tewari, 2022).
3.2.12 UK crime statistics (2022)
Combining our systematic review findings with knowledge of current sensing devices and their limitations, along with an understanding of the volume and economic impact of various crime types, enables the identification of critical gaps where further research could significantly enhance crime prevention and response efforts.
In the UK during 2022, there were 498,381 reports of criminal damage and arson, with arson estimated at 10%–15% of cases, translating to 53,000 to 79,500 arson incidents (Criminal Damage and Arson Crime and Safety Statistics, 2025; Official Statistics, 2025). Firearms offenses totalled 5,850 (CENSUS, 2023), while counterfeit currency offenses totalled 5,600 (Ministry of Justice, 2023). Waste crime, prosecuted by the Environment Agency, costs the economy approximately £1 billion annually, leading to nearly 100 prosecutions (Environmentagency, 2023). DNA profiling aided in solving 22,477 cases, including 550 rapes and 644 homicides (Corporate Report, 2023). Explosives-related offenses totalled 348 (Corporate Report, 2023), and poisonings with intent to harm numbered 105 (Office for National Statistics, 2022). Fingerprint evidence led to 22,000 matches, solving 8,472 burglaries, 3,409 vehicle crimes, and 1,529 instances of criminal damage (Corporate Report, 2022). 610 reported food safety cases were potentially up to 3,050 due to underreporting, with a financial impact of up to £1.96 billion (Food Standards Agency, 2025b; Food Standards Agency, 2025c; Food Safety News, 2025; Food Standards Agency, 2025a). Drug-related offenses reached 200,000, with a 21% increase in drug seizures compared to 2021 (Official Statistics, 2022). In 2022, UK roadside drug wipes increased to 6,273 from 4,668 in 2021, with 53.6% testing positive (NPCC, 2025), while drink/drug driving convictions rose 40% from 2014, making drug driving a growing concern (Drug Testing Clinics, 2025).
These statistics underscore the varied impacts of different crimes, guiding the focus of future research efforts. In the UK, gunshot and counterfeit crimes had minimal impact, consistent with the low number of related SR publications. Conversely, explosives cases were fewer than expected from the SR, but their economic and social impact can be severe, justifying further research. Poisoning cases were also surprisingly low, possibly due to the narrow focus of available crime statistics indicating a need for more comprehensive data on poisons and toxins.
Pollutant and food safety crimes, though reported less frequently, have a substantial economic impact, advocating for increased research attention. Comprehensive crime statistics on body fluids remain elusive, but DNA profiling highlights numerous severe cases such as homicides and rapes, showing significant potential for combating crime. Despite this, the low number of included publications in the SR suggests insufficient research in this area. It is unclear if this is due to sufficient existing sensing devices or a research gap needing exploration, warranting further investigation.
Fire-related crimes are numerous but underrepresented in included SR publications, suggesting current technologies may suffice. Fingerprint analysis accounts for a significant number of crimes and 14% of SR publications, justifying continued research efforts.
Drug-related crimes, comprising 36% of included SR publications, have seen a dramatic increase, particularly in drug driving offenses. The substantial volume of research and crime statistics in this area indicates a significant impact and underscores the need for continued and enhanced research efforts to address drug-related crime effectively.
4 Conclusion
This report offers a concise analysis of recent advancements in low-cost sensing technologies for crime reduction, based on a systematic review. Analysis of publication trends indicates substantial growth in research focused on sensors for combating crime (125% increase in included publication numbers from 2017 to 2022). Taking stock of the literature, as was done here using a systematic approach, is thus important to identify trends and research gaps that should be pursued.
Included publications were categorised into the analytes that they targeted (illicit drugs, fingerprints, explosives, body fluids, food safety, poisons and toxins, pollutants, counterfeits and documentation, fire, gunshot and other) and the types of sensing technology used (high cost: mass spectrometry, PCR, HPLC and low cost: electrochemical, colourimetric, immunoassay, luminescence and SERS). The proportion of publications from each target analyte category remained fairly constant over the period reviewed. However, an increase was seen in the dominance of the field by the four main categories (illicit drugs, food safety, fingerprints and poisons and toxins) and an increase in particular in the dominance of illicit drug publications. In fact, more than one-third (36%) of all publications related to the analysis of illicit drugs, of which 30% focussed on stimulant abuse.
Particular attention was given to articles published from 2020 onwards, reflecting the rapid technological advancements in this area, and to articles focussing on low-cost technologies, which are argued to be most impactful in crime reduction efforts. This further detailed analysis (782 documents) revealed trends in specific areas such as illicit drug detection, where stimulants and opioids were prominent subjects. Technologies like electrochemical and luminescence sensors showed promise for creating accessible, user-friendly testing devices.
The current challenges associated with the sensing devices used by UK police and authorities were reviewed, offering insights into how ongoing research identified through the SR may address these issues. A summary of key findings follows.
Fire Analysis: UK police and fire services collaborate using tools such as gas chromatography-mass spectrometry (GC-MS), fire investigation dogs, and thermal imaging cameras. Issues include the need for portable GC-MS and the limitations of canine detection. Research into portable MOx sensors shows promise for rapid on-site analysis.
Gunshot Residue (GSR) Detection: Current methods, like colourimetric spot tests, face issues of low specificity and sample degradation. Field-deployable scanning electron microscopes (SEM) and electrochemical methods under development show potential for improved specificity and cost-effectiveness.
Counterfeit Detection: Techniques like UV and infrared light, magnetic ink detectors, and portable spectrometers are used to identify counterfeit items. However, false positives and sophisticated counterfeiting techniques pose challenges. Advances in colourimetric and luminescent sensing and magnetic nanoclusters offer improved detection capabilities.
Pollutant Measurement: Instruments like GC-MS, Raman spectrometers, photoionization detectors (PIDs), and x-ray fluorescence analysers (XRF) are used to detect pollutants. Issues include high costs, maintenance, and limited detection capabilities. Research into economical materials and dual detection methods shows promise for enhanced analyte detection.
Body Fluid Identification: Sensors such as luminol, Rapid Stain Identification (RSID) tests, and portable DNA analysers are used to detect body fluids at crime scenes. Challenges include false positives, DNA degradation, and high costs. Research into eco-friendly materials and dual detection techniques offers potential solutions.
Explosive Detection: Portable detectors, canine units, and colourimetric kits are used for on-site explosive detection. Current challenges include high costs, false positives, and limited detectable compounds. Research into dual detection methods and 3D printed electrodes for electrochemical sensors aims to address these issues.
Poison and Toxin Identification: Technologies such as portable spectrometers and biosensors are used for on-site detection. Issues include high costs, environmental stability, and limited detection range. Advances in AIE probes and paper-based methods show potential for cost-effective and comprehensive detection.
Fingerprint Detection: MobileID devices and various powders are used for on-site fingerprint detection. Current limitations include sensitivity to environmental conditions and the need for extensive training. Research into nanomaterials offers enhanced sensitivity and selectivity for fingerprint detection.
Food Safety Analysis: Local authorities use portable spectrometers, rapid testing kits, chemical test strips, and UV lights for food safety. Challenges include high costs, specificity issues, and the need for special sample preparation. Research into dual detectors and printed electrochemical devices aims to improve cost-effectiveness and sensitivity.
Illicit Drug Detection: UK police use NIK tests and DrugWipe sensors for on-site drug detection. Current limitations include sensitivity, specificity, and the need for confirmatory testing. Advances in dual detection methods, lateral flow immunoassays, and electro-chemiluminescent screening are being explored to enhance specificity and matrix tolerance.
An analysis of the prevalence of different crime types and their social and economic impacts identified research gaps that could significantly enhance crime prevention. Gunshot, counterfeit, explosives and poisoning analyses were found to have a minimal impact on UK crime compared to other analytes. While improvements in sensing for these areas would be beneficial, they should not be the primary focus in the UK at present. Pollutant and food safety analytes, though less frequently reported in crime statistics, have a substantial economic impact, indicating significant benefits from further research. The number of crimes involving body fluid analysis, particularly DNA profiling, is substantial. However, the relatively low number of related SR publications included indicates either a research gap or the adequacy of existing sensing devices. The review of SR publications relating to body fluids reveals many areas where further research is and would be beneficial, underscoring that there are significant research gaps that need to be addressed. Illicit drug-related crimes, especially drug driving, have significantly increased in recent years, comprising 36% of included SR publications. This highlights the urgent need for continued and enhanced research efforts to address these issues effectively.
Overall, the review highlights significant progress in low-cost sensing technologies for crime reduction, addressing key challenges and proposing innovative solutions for more efficient and effective crime detection and analysis. These advancements indicate promising pathways for enhancing crime detection and public safety through accessible, reliable sensing technologies. Future efforts should focus on refining dual detection methods, reducing matrix interference, and fostering collaboration between academia and law enforcement for effective implementation.
This systematic review of sensing technologies to combat crime is intended to provide policymakers, law enforcement agencies, and researchers with a comprehensive and timely evaluation of existing research, guiding strategic decisions on technology adoption and resource allocation. By identifying gaps and future research directions, the review is also intended to stimulate innovation and development of advanced sensing tools, crucial for combating sophisticated criminal activities.
5 Future outlooks
5.1 Study limitations
This work has provided a systematic review and detailed understanding of the existing sensing technologies for combating crime and key gaps in the literature where further work would be beneficial.
5.1.1 Systematic review
Although a systematic approach was taken here to ensure repeatability and extensive coverage, there is a possibility that the search terms used, or the application of the inclusion/exclusion criteria may have resulted in relevant studies being missed or excluded. Moreover, journal space limitations preclude the discussion of all insights extracted from the included studies. For example, a summary of the methods used in every publication for each analyte category would provide more understanding of the existing literature but would increase the length of the review significantly.
5.1.2 Other languages and countries
This review only included publications written in English, which means studies from non-English-speaking countries may have been excluded. This limitation highlights the potential loss of key publications and suggests that the findings of this systematic review might not be universally applicable. Engaging with international stakeholders and experts could help address this limitation and ensure a more comprehensive understanding.
5.2 Future directions
5.2.1 Patent search
Alongside a search of academic databases, it would be beneficial to search recent patent applications and grants relating to sensors utilised for combating crime. The same key search queries can be used to search databases such as Google Patents and Derwent Innovations. This will outline the most recent sensing technologies that are currently being developed and may indicate further key gaps and avenues for future beneficial research.
5.2.2 Low hanging fruit
Low hanging fruit arguably represent the best directions for further research that will allow the rapid and easy development of mass producible sensors to combat crime. To expedite advancements in sensing technologies for crime detection, focusing on integrating AI and IoT for enhanced data analysis and connectivity is paramount. Concurrently, investing in advanced materials like nanomaterials and conductive polymers can significantly improve sensor performance while reducing production costs and environmental impact. Standardising portable designs and enabling multiplexed detection capabilities are also crucial for practical deployment. Lastly, fostering collaborations between stakeholders, law enforcement officials, and government science technology agencies will accelerate the translation of research innovations into commercial products, ensuring robustness, scalability, and regulatory compliance of next-generation sensing devices.
5.2.3 Manufacture of a sensor
The overarching aim in creating this SR was to, alongside an understanding of current developments, understand gaps in the literature for further research. Further research in these areas should ultimately lead to the creation of a low-cost, portable sensing device that can be used for its chosen analyte to combat crime by its mass manufacture and deployment. Considerations of long-term storage, matrix tolerance and approval from law enforcement agencies will be vital.
5.2.4 Global megatrend
A global megatrend is a large-scale, sustained shift in major social, economic, environmental, technological, or geopolitical patterns that significantly transforms multiple industries and aspects of life over decades (PwC, 2025; META, 2016). This therefore makes it an important consideration when looking at further research into sensors to combat crime.
The global megatrend for sensors to combat crime encompass advancements in AI, IoT, and big data, which are enhancing the capabilities and integration of these technologies. Urbanization and connectivity improvements, particularly through 5G and cloud computing, are driving the adoption and effectiveness of sensors to combat crime. Economic, social, and environmental considerations further shape the development and deployment of these systems, highlighting the need for cost-effective, ethical, and resilient solutions in combating crime.
5.2.5 Sustainable development goals
The Sustainable Development Goals are pivotal in addressing global challenges by promoting equity and sustainability through interconnected goals and specific 2030 targets, thereby fostering international cooperation and accountability (United Nations, 2025). Therefore, considering these goals is essential when exploring further research into sensing devices to combat crime.
Research in this field not only drives technological advancements (Goal 9) but also contributes to achieving societal goals such as safety, justice, and sustainable urban development (Goals 11 and 16). Furthermore, ensuring the ethical deployment and use of sensor technologies aligns with the overarching principles of sustainable development, emphasizing inclusivity, safety, and justice for all (Goal 17).
5.2.6 Emerging technologies
Rapid advancements in sensor technology mean that newer studies may use more advanced sensors not covered in older reviews. Keeping reviews up-to-date with the latest technologies and applications is challenging but crucial. Whilst this SR aimed to provide a comprehensive overview of sensing technologies for combating crime, future reviews may benefit from focusing separately on specific target analytes to achieve a more nuanced understanding and detailed analysis.
Author contributions
AC: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review and editing. SJ: Funding acquisition, Methodology, Supervision, Writing – review and editing. T-CL: Funding acquisition, Supervision, Writing – review and editing.
Funding
The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by the EPSRC and Dawes Centre for Future crimes at UCL, grant reference number (EP/N509577/1 and EP/T517793/1).
Acknowledgments
The authors would like to acknowledge the EPSRC, the Dawes Centre for Future Crimes at UCL and the Institute for Materials Discovery that funded and supported the research.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Generative AI statement
The author(s) declare that no Generative AI was used in the creation of this manuscript.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2025.1568867/full#supplementary-material
Footnotes
1TargetZero is an initiative to reduce the number of traffic deaths and serious injuries to zero by 2030.
References
Abdelkader, M., Elmanzalawy, M., and Pauliukaite, R. (2022). 3-D electrodes for electrochemical sensors: review in different approaches. IEEE Sens. J. 22 (24), 23620–23632. doi:10.1109/jsen.2022.3220815
Abd-Elsabour, M., Alsoghier, H. M., Alhamzani, A. G., Abou-Krisha, M. M., Yousef, T. A., and Assaf, H. F. (2022). A novel electrochemical sensor for detection of nicotine in tobacco products based on graphene oxide nanosheets conjugated with (1,2-naphthoquinone-4-sulphonic acid) modified glassy carbon electrode. Nanomaterials 12 (14), 2354. doi:10.3390/nano12142354
Abdollahi, A., Dashti, A., Rahmanidoust, M., and Hanaei, N. (2022). Metal-free and ecofriendly photoluminescent nanoparticles for visualization of latent fingerprints, anticounterfeiting, and information encryption. SENSORS ACTUATORS B-CHEMICAL 372, 132649. doi:10.1016/j.snb.2022.132649
Abdulhussein, S. K., Al-Kazazz, F. F. M., and Rheima, A. M. (2022). The role of nanomaterials in the recent development of electrochemical biosensors. Port. ELECTROCHIMICA ACTA 41 (3), 211–221. doi:10.4152/pea.2023410303
Abel, R. J., Zadora, G., Sandercock, P. M. L., and Harynuk, J. J. (2018). Modern instrumental limits of identification of ignitable liquids in forensic fire debris analysis. Separations 5 (4), 58. doi:10.3390/separations5040058
Abnous, K., Abdolabadi, A. K., Ramezani, M., Alibolandi, M., Nameghi, M. A., Zavvar, T., et al. (2022). A highly sensitive electrochemical aptasensor for cocaine detection based on CRISPR-Cas12a and terminal deoxynucleotidyl transferase as signal amplifiers. Talanta 241, 123276. doi:10.1016/j.talanta.2022.123276
Abramson, A. (2021). Substance use during the pandemic. Am. Psychol. Assoc. 52 (2), 22. Available online at: https://www.apa.org/monitor/2021/03/substance-use-pandemic.
Abuzalat, O., Wong, D., Park, S. S., and Kim, S. (2020). Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection. Nanoscale. 12 (25), 13523–13530. doi:10.1039/d0nr01653e
Açikgöz, G., and Hamamci, B. (2020). Determination of ethyl glucuronide (EtG) in blood samples using partial least squares discriminant analysis applied to surface-enhanced Raman spectroscopy. Vib. Spectrosc. 106, 103012. doi:10.1016/j.vibspec.2019.103012
Adedara, I. A., Mohammed, K. A., Da-Silva, O. F., Salaudeen, F. A., Gonçalves, F. L. S., Rosemberg, D. B., et al. (2022). Utility of cockroach as a model organism in the assessment of toxicological impacts of environmental pollutants. Environ. Adv. 8, 100195. doi:10.1016/j.envadv.2022.100195
Adegoke, O., and Nic Daeid, N. (2021). Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective. Emerg. Top. Life Sci. 5, 367–379. doi:10.1042/etls20200281
Adegoke, O., Nsuamani, M. L., and Daeid, N. N. (2023). Cadmium-free silica-encapsulated molecularly imprinted AuZnCeSeS quantum dots nanocomposite as an ultrasensitive fluorescence nanosensor for methamphetamine detection. Mater Sci. Semicond. Process 159, 107387. doi:10.1016/j.mssp.2023.107387
Adegoke, O., Zolotovskaya, S., Abdolvand, A., and Daeid, N. N. (2020). Biomimetic graphene oxide-cationic multi-shaped gold nanoparticle-hemin hybrid nanozyme: tuning enhanced catalytic activity for the rapid colorimetric apta-biosensing of amphetamine-type stimulants. Talanta 216, 120990. doi:10.1016/j.talanta.2020.120990
Adegoke, O., Zolotovskaya, S., Abdolvand, A., and Daeid, N. N. (2022). Fabrication of a near-infrared fluorescence-emitting SiO2-AuZnFeSeS quantum dots-molecularly imprinted polymer nanocomposite for the ultrasensitive fluorescence detection of levamisole. COLLOIDS SURFACES A-PHYSICOCHEMICAL Eng. ASPECTS 646, 129013. doi:10.1016/j.colsurfa.2022.129013
Adhikary, R. R., and Banerjee, R. (2021). Development of smart core-shell nanoparticle-based sensors for the point-of-care detection of alpha amylase in diagnostics and forensics. Biosens. Bioelectron. 184, 113244. doi:10.1016/j.bios.2021.113244
Ahamed, S., Mahato, M., Tohora, N., Sultana, T., Sahoo, R., Ghanta, S., et al. (2023). A PET and ESIPT-communicated ratiometric, turn-on chromo-fluorogenic sensor for rapid and sensitive detection of sarin gas mimic, diethylchlorophosphate. Talanta. 258, 124448. doi:10.1016/j.talanta.2023.124448
Ahmed, I., Elsherif, M., Park, S., Yetisen, A. K., and Butt, H. (2022). Nanostructured photonic hydrogels for real-time alcohol detection. ACS Appl. Nano Mater 5 (6), 7744–7753. doi:10.1021/acsanm.2c00576
Ahmed, S. R., Chand, R., Kumar, S., Mittal, N., Srinivasan, S., and Rajabzadeh, A. R. (2020). Recent biosensing advances in the rapid detection of illicit drugs. TRAC-TRENDS Anal. Chem. 131, 116006. doi:10.1016/j.trac.2020.116006
Akçan, R., Yildirim, M. S., Ilhan, H., Güven, B., Tamer, U., and Saglam, N. (2020). Surface enhanced Raman spectroscopy as a novel tool for rapid quantification of heroin and metabolites in saliva. Turk J. Med. Sci. 50 (5), 1470–1479. doi:10.3906/sag-1912-196
Akgönüllü, S., Battal, D., Yalcin, M. S., Yavuz, H., and Denizli, A. (2020). Rapid and sensitive detection of synthetic cannabinoids JWH-018, JWH-073 and their metabolites using molecularly imprinted polymer-coated QCM nanosensor in artificial saliva. Microchem. J. 153, 104454. doi:10.1016/j.microc.2019.104454
Alberti, G., Zanoni, C., Spina, S., Magnaghi, L. R., and Biesuz, R. (2023). Trends in molecularly imprinted polymers (MIPs)-Based plasmonic sensors. CHEMOSENSORS 11 (2), 144. doi:10.3390/chemosensors11020144
Alder, R., Hong, J. M., Chow, E., Fang, J. H., Isa, F., Ashford, B., et al. (2021). Application of plasma-printed paper-based SERS substrate for cocaine detection. SENSORS 21 (3), 810. doi:10.3390/s21030810
Aleknavicene, I., Pabreza, E., Talaikis, M., Jankunec, M., and Raciukaitis, G. (2022). Low-cost SERS substrate featuring laser-ablated amorphous nanostructure. Appl. Surf. Sci. 571, 151248. doi:10.1016/j.apsusc.2021.151248
Alhaddad, M., and Sheta, S. M. (2020). Dual naked-eye and optical chemosensor for morphine detection in biological real samples based on Cr(III) metal–organic framework nanoparticles. ACS Omega 5 (43), 28296–28304. doi:10.1021/acsomega.0c04249
Al-Hetlani, E., D’Cruz, B., and Amin, M. O. (2020). A 3D miniaturized solid-state chemiluminescence sensor based on ruthenium functionalized polymeric monolith for the detection of pharmaceutical drugs. J. Mater Sci. 55 (27), 13232–13243. doi:10.1007/s10853-020-04974-z
Almabadi, M. H., Truta, F. M., Adamu, G., Cowen, T., Tertis, M., Alanazi, K. D. M., et al. (2023). Integration of smart nanomaterials for highly selective disposable sensors and their forensic applications in amphetamine determination. Electrochim Acta 446, 142009. doi:10.1016/j.electacta.2023.142009
Alomar, T. S., AlMasoud, N., Xu, Y., Lima, C., Akbali, B., Maher, S., et al. (2022). Simultaneous multiplexed quantification of banned Sudan dyes using surface enhanced Raman scattering and chemometrics. SENSORS 22 (20), 7832. doi:10.3390/s22207832
Alonzo, M., Alder, R., Clancy, L., and Fu, S. L. (2022). Portable testing techniques for the analysis of drug materials. WILEY Interdiscip. Rev. FORENSIC Sci. 4 (6). doi:10.1002/wfs2.1461
Alves, T. M. R., Deroco, P. B., Wachholz, D. J., Vidotto, L. H. B., and Kubota, L. T. (2021). Wireless wearable electrochemical sensors: a review. Braz. J. Anal. Chem. 8 (31), 22–50. doi:10.30744/brjac.2179-3425.rv-62-2020
Amalraj, A., Narayanan, M., and Perumal, P. (2022). Highly efficient peroxidase-like activity of a metal-oxide-incorporated CeO2-MIL(Fe) metal-organic framework and its application in the colorimetric detection of melamine and mercury ions via induced hydrogen and covalent bonds. ANALYST. 147 (14), 3234–3247. doi:10.1039/d2an00864e
Ameen, A., Brown, K., and Dennany, L. (2022). Can synthetic cannabinoids be reliably screened with electrochemistry? An assessment of the ability to screen for synthetic cannabinoids STS-135 and BB-22 within a single sample matrix. J. Electroanal. Chem. 909, 116141. doi:10.1016/j.jelechem.2022.116141
Ameen, A., Russell, H., and Dennany, L. L. (2020). Voltammetry as a rapid screening method for NPS identification. Proc. SPIE 11540, 121–126. doi:10.1117/12.2573507
Ameku, W. A., Gonçalves, J. M., Ataide, V. N., Santos, M. S. F., Gutz, I. G. R., Araki, K., et al. (2021). Combined colorimetric and electrochemical measurement paper-based device for chemometric proof-of-concept analysis of cocaine samples. ACS Omega 6 (1), 594–605. doi:10.1021/acsomega.0c05077
Amini, K., Sepehrifard, A., Valinasabpouri, A., Safruk, J., Angelone, D., and Lourenco, T. D. (2022). Recent advances in electrochemical sensor technologies for THC detection-a narrative review. J. Cannabis Res. 4 (1), 12. doi:10.1186/s42238-022-00122-3
Amiri, M., Imanzadeh, H., and Sefid-Sefidehkhan, Y. (2021). An overview on electrochemical sensors based on nanomaterials for the determination of drugs of abuse. Curr. Drug Deliv. 18 (2), 162–183. doi:10.2174/1567201817666200520084835
Amr, A. E. E., Kamel, A. H., Almehizia, A. A., Sayed, A. Y. A., and Abd-Rabboh, H. S. M. (2021). Solid-contact potentiometric sensors based on main-tailored bio-mimics for trace detection of harmine hallucinogen in urine specimens. MOLECULES 26 (2), 324. doi:10.3390/molecules26020324
Anfossi, L., Di Nardo, F., Russo, A., Cavalera, S., Giovannoli, C., Spano, G., et al. (2018). Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Anal. Bioanal. Chem. 411 (9), 1905–1913. doi:10.1007/s00216-018-1451-6
Anjali, K. G., Jibin, K. V., Aswathy, P. V., Shanty, A. A., Shijo, F., Dhanya, T. M., et al. (2022). An imidazole ligated zinc(II) transition metal complex as a “turn-off” fluorescent sensor for the selective and sensitive detection of brilliant blue FCF. J. Photochem. Photobiol. A-CHEMISTRY 433, 114134. doi:10.1016/j.jphotochem.2022.114134
Ansari, A. A. A., Aldajani, K. M. M., AlHazaa, A. N. N., and Albrithen, H. A. A. (2022). Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coord. Chem. Rev. 462, 214523. doi:10.1016/j.ccr.2022.214523
Anvari, L., Ghoreishi, S. M., Faridbod, F., and Ganjali, M. R. (2021). Electrochemical determination of methamphetamine in human plasma on a nanoceria nanoparticle decorated reduced graphene oxide (rGO) glassy carbon electrode (GCE). Anal. Lett. 54 (15), 2509–2522. doi:10.1080/00032719.2021.1875229
Anvari, L., Ghoreishi, S. M., Khoshnevisan, K., Ganjali, M. R., and Faridbod, F. (2023). Methamphetamine determination using label-free impedimetric aptasensor based on ceria nanocomposite. J. Appl. Electrochem 53 (9), 1843–1851. doi:10.1007/s10800-023-01880-5
Anzar, N., Suleman, S., Parvez, S., and Narang, J. (2022). A review on Illicit drugs and biosensing advances for its rapid detection. PROCESS Biochem. 113, 113–124. doi:10.1016/j.procbio.2021.12.021
Apak, R., Üzer, A., Saglam, S., and Arman, A. (2023). Selective electrochemical detection of explosives with nanomaterial based electrodes. Electroanalysis 35 (1). doi:10.1002/elan.202200175
Arman, A., Saglam, S., Üzer, A., and Apak, R. (2022). Electrochemical determination of nitroaromatic explosives using glassy carbon/multi walled carbon nanotube/polyethyleneimine electrode coated with gold nanoparticles. Talanta 238, 122990. doi:10.1016/j.talanta.2021.122990
Assis, A. M. L., Costa, C. V., Alves, M. S., Melo, J. C. S., de Oliveira, V. R., Tonholo, J., et al. (2023). From nanomaterials to macromolecules: innovative technologies for latent fingerprint development. WILEY Interdiscip. Rev. FORENSIC Sci. 5 (2). doi:10.1002/wfs2.1475
Ataide, V. N., Mendes, L. F., Gama, LILM, de, A. W. R., and Paixão, TRLC (2020). Electrochemical paper-based analytical devices: ten years of development. Anal. Methods 12 (8), 1030–1054. doi:10.1039/c9ay02350j
Atik, G., Kilic, N. M., Horzum, N., Odaci, D., and Timur, S. (2023). Antibody-Conjugated electrospun nanofibers for electrochemical detection of methamphetamine. ACS Appl. Mater Interfaces 15 (20), 24109–24119. doi:10.1021/acsami.3c02266
Atta, S., and Tuan, V. D. (2023). Ultra-trace SERS detection of cocaine and heroin using bimetallic gold-silver nanostars (BGNS-Ag). Anal. Chim. Acta. 1251, 340956. doi:10.1016/j.aca.2023.340956
Atta, S., and Vo-Dinh, T. (2023). A hybrid plasmonic nanoprobe using polyvinylpyrrolidone-capped bimetallic silver-gold nanostars for highly sensitive and reproducible solution-based SERS sensing. ANALYST. 148 (8), 1786–1796. doi:10.1039/d2an01876d
Author Anonymous (2025a). Drug categories and their common effects – the wise drive. Available online at: https://www.thewisedrive.com/drug-categories-and-their-common-effects/.
Author Anonymous (2025b). NSDUH national releases. Available online at: https://www.samhsa.gov/data/nsduh/national-releases.
Aydindogan, E., Balaban, S., Evran, S., Coskunol, H., and Timur, S. (2019). A bottom-up approach for developing aptasensors for abused drugs: biosensors in forensics. Biosens. (Basel). 9 (4), 118. doi:10.3390/bios9040118
Azimi, S., and Docoslis, A. (2022). Recent advances in the use of surface-enhanced Raman scattering for illicit drug detection. SENSORS 22 (10), 3877. doi:10.3390/s22103877
Azman, A., Mahat, N., Wahab, R., Ahmad, W., Puspanadan, J., Huri, M., et al. (2021). Box-Behnken design optimisation of a green novel nanobio-based reagent for rapid visualisation of latent fingerprints on wet, non-porous substrates. Biotechnol. Lett. 43 (4), 881–898. doi:10.1007/s10529-020-03052-3
Badawy, S. M. (2020). Semi-quantitative analysis of drugs of abuse in human urine by end-point dilution flow immunochromatographic assay. JPC – J. Planar Chromatogr. – Mod. TLC 33 (4), 419–425. doi:10.1007/s00764-020-00041-0
Badshah, M. A., Koh, N. Y., Zia, A. W., Abbas, N., Zahra, Z., and Saleem, M. W. (2020). Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing. Nanomaterials 10 (9), 1749. doi:10.3390/nano10091749
Baghban, H. N., Hasanzadeh, M., Liu, Y. Q., and Seidi, F. (2022). A portable colorimetric chemosensing regime for ractopamine in chicken samples using μPCD decorated by silver nanoprisms. RSC Adv. 12 (39), 25675–25686. doi:10.1039/d2ra04793d
Bai, L. (2022). RETRACTED: electrochemical behavior of salbutamol, clenbuterol, ractopamine and albuterol at CNTs/GCE. Int. J. Electrochem Sci. 17 (5), 220567. doi:10.20964/2022.05.67
Balaban, S., Man, E., Durmus, C., Bor, G., Ceylan, A. E., Gumus, Z. P., et al. (2020). Sensor platform with a custom-tailored aptamer for diagnosis of synthetic cannabinoids. Electroanalysis 32 (3), 656–665. doi:10.1002/elan.201900670
Balaji, R., Renganathan, V., Chen, S. M., and Singh, V. (2020). Ingenious design and development of recyclable 2D BiOCl nanotiles attached tri-functional robust strips for high performance selective electrochemical sensing, SERS and heterogenous dip catalysis. Chem. Eng. J. 385, 123974. doi:10.1016/j.cej.2019.123974
Bandey, H. L., and Gibson, A. P. (2006). Investigation, enforcement and protection sector fingerprint development and imaging newsletter: special edition the powders process, study 2: evaluation of fingerprint powders on smooth surfaces authors. Available online at: www.hosdb.homeoffice.gov.uk.
Baracu, A. M., and Gugoasa, L. A. D. (2021). Review—recent advances in microfabrication, design and applications of amperometric sensors and biosensors. J. Electrochem Soc. 168 (3), 037503. doi:10.1149/1945-7111/abe8b6
Barveen, N. R., Wang, T. J., and Chang, Y. H. (2021). Photochemical decoration of silver nanoparticles on silver vanadate nanorods as an efficient SERS probe for ultrasensitive detection of chloramphenicol residue in real samples. Chemosphere 275, 130115. doi:10.1016/j.chemosphere.2021.130115
Basterrechea, D. A., Rocher, J., Parra, L., and Lloret, J. (2021). Low-cost system based on optical sensor to monitor discharge of industrial oil in irrigation ditches. SENSORS 21 (16), 5449. doi:10.3390/s21165449
Batool, M., Afzal, Z., Junaid, H. M., Solangi, A. R., and Hassan, A. (2022b). Sulfonamides as optical chemosensors. Crit. Rev. Anal. Chem. 54, 954–981. doi:10.1080/10408347.2022.2105135
Batool, R., Riaz, N., Junaid, H. M., Waseem, M. T., Khan, Z. A., Nawazish, S., et al. (2022a). Fluorene-based fluorometric and colorimetric conjugated polymers for sensitive detection of 2,4,6-trinitrophenol explosive in aqueous medium. ACS Omega 7 (1), 1057–1070. doi:10.1021/acsomega.1c05644
Bazin, I., Tria, S. A., Hayat, A., and Marty, J. L. (2017). New biorecognition molecules in biosensors for the detection of toxins. Biosens. Bioelectron. 87, 285–298. doi:10.1016/j.bios.2016.06.083
Bazzi, F., Ebrahimi-Hoseinzadeh, B., Sangachin, E. A., and Hosseini, M. (2023). The integration of hybridization chain reaction (HCR) with fluorogenic silver nanoclusters (AgNCs) in an aggregation induced emission (AIE)-based nanosensor for sex determination and its forensic application. Microchem. J. 185, 108188. doi:10.1016/j.microc.2022.108188
Behyar, M. B., and Shadjou, N. (2021). d-Penicillamine functionalized dendritic fibrous nanosilica (DFNS-DPA): synthesise and its application as an innovative advanced nanomaterial towards sensitive quantification of ractopamine. RSC Adv. 11 (48), 30206–30214. doi:10.1039/d1ra05655g
Bener, M., Sen, F. B., and Apak, R. (2022). Protamine gold nanoclusters - based fluorescence turn-on sensor for rapid determination of Trinitrotoluene (TNT). SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc., 279. doi:10.1016/j.saa.2022.121462
Bever, C. S., Adams, C. A., Hnasko, R. M., Cheng, L. W., and Stanker, L. H. (2020). Lateral flow immunoassay (LFIA) for the detection of lethal amatoxins from mushrooms. PLoS One 15 (4), e0231781. doi:10.1371/journal.pone.0231781
Bhagat, D. S., Suryawanshi, I. V., Gurnule, W. B., Sawant, S. S., and Chavan, P. B. (2019). Greener synthesis of CuO nanoparticles for enhanced development of latent fingerprints. Mater Today Proc. 36, 747–750. doi:10.1016/j.matpr.2020.05.357
Bhalla, N., Jolly, P., Formisano, N., and Estrela, P. (2016). Introduction to biosensors. Essays Biochem. 60 (1), 1–8. doi:10.1042/ebc20150001
Bhati, K., Tripathy, D. B., Kumaravel, V., Sudhani, H. P. K., Ali, S., Choudhary, R., et al. (2023). Sensitive fingerprint detection using biocompatible mesoporous silica nanoparticle coating on non-porous surfaces. COATINGS 13 (2), 268. doi:10.3390/coatings13020268
Bilge, S., Dogan-Topal, B., Gürbüz, M. M., Yücel, A., Sinag, A., and Ozkan, S. A. (2022). Recent advances in electrochemical sensing of cocaine: a review. TRAC-TRENDS Anal. Chem. 157, 116768. doi:10.1016/j.trac.2022.116768
Blythe, J. M., and Johnson, S. D. (2019). A systematic review of crime facilitated by the consumer Internet of Things. Secur. J. 34, 97–125. doi:10.1057/s41284-019-00211-8
Bollella, P., and Katz, E. (2020). Biosensors special issue: the potential of (bio)sensors for the forensic. Sciences 9 (4). Available online at: https://www.mdpi.com/journal/biosensors/special_issues/F_sci.
Borgul, P., Pawlak, P., Rudnicki, K., Sipa, K., Krzyczmonik, P., Trynda, A., et al. (2021). Ephedrine sensing at the electrified liquid-liquid interface supported with micro-punched self-adhesive polyimide film. SENSORS ACTUATORS B-CHEMICAL 344, 130286. doi:10.1016/j.snb.2021.130286
Borgul, P., Sobczak, K., Rudnicki, K., Glazer, P., Pawlak, P., Trynda, A., et al. (2022b). Electrochemical behavior of cocaine cutting agents at the polarized liquid-liquid interface. Electrochim Acta 402, 139553. doi:10.1016/j.electacta.2021.139553
Borgul, P., Sobczak, K., Rudnicki, K., Leniart, A., Skrzypek, S. L., and Poltorak, L. (2022a). Oxidized thin aluminum films used as the polarized liquid-liquid interface support for norcocaine detection. SENSORS ACTUATORS B-CHEMICAL 373, 132651. doi:10.1016/j.snb.2022.132651
Borgul, P., Sobczak, K., Sipa, K., Rudnicki, K., Skrzypek, S., Trynda, A., et al. (2022c). Heroin detection in a droplet hosted in a 3D printed support at the miniaturized electrified liquid-liquid interface. Sci. Rep. 12 (1), 18615. doi:10.1038/s41598-022-21689-0
Boroujerdi, R., Abdelkader, A., and Paul, R. (2020). State of the art in alcohol sensing with 2D materials. Nanomicro Lett. 12 (1), 33. doi:10.1007/s40820-019-0363-0
Boroujerdi, R., Abdelkader, A., and Paul, R. (2022a). Highly sensitive and selective detection of the antidepressant amitriptyline using a functionalised graphene-based sensor. CHEMNANOMAT 8 (10). doi:10.1002/cnma.202200209
Boroujerdi, R., and Paul, R. (2022a). Introducing graphene-indium oxide electrochemical sensor for detecting ethanol in aqueous samples with CCD-RSM optimization. CHEMOSENSORS 10 (2), 42. doi:10.3390/chemosensors10020042
Boroujerdi, R., and Paul, R. (2022b). Graphene-based electrochemical sensors for psychoactive drugs. NANOMATERIALS 12 (13), 2250. doi:10.3390/nano12132250
Boroujerdi, R., Paul, R., and Abdelkader, A. (2022b). Rapid detection of amitriptyline in dried blood and dried saliva samples with surface-enhanced Raman spectroscopy. Sensors 22 (21), 8257. doi:10.3390/s22218257
Bouaziz, L., Boulahlib, S., Ozacar, M., Si-Ahmed, K., and Bessekhouad, Y. (2022). Effect of Iodine-doping toward ZnO critical optical constants and their applications to latent fingerprints detection. Mater Today Commun. 31, 103450. doi:10.1016/j.mtcomm.2022.103450
Bräuer, B., Unger, C., Werner, M., and Lieberzeit, P. A. (2021). Biomimetic sensors to detect bioanalytes in real-life samples using molecularly imprinted polymers: a review. SENSORS 21 (16), 5550. doi:10.3390/s21165550
Brenes, J. P., Arroyo-Mora, L. E., and Barquero-Quirós, M. (2022). Enzymatic inhibitive determination of AB-Fubinaca and AB-Pinaca on screen printed carbon tetratiofulvalene electrodes modified with nanoparticles and carbon nanotubes. Sens. Biosensing Res. 38, 100515. doi:10.1016/j.sbsr.2022.100515
Brown, K., Allan, P., Francis, P. S., and Dennany, L. (2020). Psychoactive substances and how to find them: electrochemiluminescence as a strategy for identification and differentiation of drug species. J. Electrochem Soc. 167 (16), 166502. doi:10.1149/1945-7111/abc9db
Brown, K., and Dennany, L. (2022). Electrochemiluminescence sensors and forensic investigations: a viable technique for drug detection? PURE Appl. Chem. 94 (5), 535–545. doi:10.1515/pac-2021-1204
Bruijns, B., Tiggelaar, R., and Gardeniers, H. (2020). A microfluidic approach for biosensing DNA within forensics. Appl. Sci. 10 (20), 7067. doi:10.3390/app10207067
Bruner, E., and Monjardez, G. (2023). Development of surface-enhanced Raman spectroscopy evidence swabs using a silver nanoparticle biosynthesis for the detection of animal blood. J. RAMAN Spectrosc. 54 (3), 238–244. doi:10.1002/jrs.6479
Bumbrah, G. S., Jani, M., Bhagat, D. S., Dalal, K., Kaushal, A., Sadhana, K., et al. (2022). Zinc oxide nanoparticles for detection of latent fingermarks on nonporous surfaces. Mater Chem. Phys. 278, 125660. doi:10.1016/j.matchemphys.2021.125660
Burr, D. S., Fatigante, W. L., Lartey, J. A., Jang, W. G., Stelmack, A. R., McClurg, N. W., et al. (2020). Integrating SERS and PSI-ms with dual purpose plasmonic paper substrates for on-site illicit drug confirmation. Anal. Chem. 92 (9), 6676–6683. doi:10.1021/acs.analchem.0c00562
Byzova, N. A., Serchenya, T. S., Vashkevich, I. I., Zherdev, A. V., Sviridov, O. V., and Dzantiev, B. B. (2020). Lateral flow immunoassay for rapid qualitative and quantitative control of the veterinary drug bacitracin in milk. Microchem. J. 156, 104884. doi:10.1016/j.microc.2020.104884
Cai, Q. R., Mateti, S., Jiang, H. B., Li, L. H., Huang, S. M., and Chen, Y. (2022a). Boron nitride nanosheets for surface-enhanced Raman spectroscopy. Mater. TODAY Phys. 22, 100575. doi:10.1016/j.mtphys.2021.100575
Cai, Y., Hou, T. T., Wang, C. Y., Tang, Y. H., Zhang, Z. Y., Zhang, D. T., et al. (2022b). Fluorescence enhancement of dicyanomethylene-4H-pyran derivatives in solid state for visualization of latent fingerprints. Front. Chem. 10, 943925. doi:10.3389/fchem.2022.943925
Calabretta, M. M., Montali, L., Lopreside, A., Fragapane, F., Iacoangeli, F., Roda, A., et al. (2021). Ultrasensitive on-field luminescence detection using a low-cost silicon photomultiplier device. Anal. Chem. 93 (20), 7388–7393. doi:10.1021/acs.analchem.1c00899
Canoura, J., Liu, Y. Z., Perry, J., Willis, C., and Xiao, Y. (2023). Suite of aptamer-based sensors for the detection of fentanyl and its analogues. ACS Sens. 8 (5), 1901–1911. doi:10.1021/acssensors.2c02463
Cao, H. Y., Cai, Z. Z., Li, Y. S., Wang, G. F., and Dou, X. C. (2022). Colorimetric-fluorescent dual-mode sensing of peroxide explosives based on inner filter effect with boosted sensitivity and selectivity. Chin. J. Anal. Chem. 50 (1), 4–12. doi:10.1016/j.cjac.2021.10.002
Cardoso, R. M., Rocha, D. P., Rocha, R. G., Stefano, J. S., Silva, R. A. B., Richter, E. M., et al. (2020). 3D-printing pen versus desktop 3D-printers: fabrication of carbon black/polylactic acid electrodes for single-drop detection of 2,4,6-trinitrotoluene. Anal. Chim. Acta 1132, 10–19. doi:10.1016/j.aca.2020.07.034
Carvalho, R. M., Pedao, E. R., Guerbas, F. M. R., Tronchini, M. P., Ferreira, V. S., Petroni, J. M., et al. (2023). Electrochemical study and forensic electroanalysis of fungicide benzovindiflupyr using disposable graphite pencil electrode. Talanta 252, 123873. doi:10.1016/j.talanta.2022.123873
Castro, A. S., Rodrigues, C. H. P., de Menezes, M. M. T., da Silva, A. B. D., Bruni, A. T., and de Oliveira, M. F. (2021). Fe(II), Ni(II), Cu(II), and Co(II) salen Schiff base complexes: proposal for a voltammetric sensor to analyze cocaine hydrochloride and its interferents. FORENSIC Chem. 25, 100347. doi:10.1016/j.forc.2021.100347
Castro, S. V. F., Lima, A. P., Rocha, R. G., Cardoso, R. M., Montes, R. H. O., Santana, M. H. P., et al. (2020). Simultaneous determination of lead and antimony in gunshot residue using a 3D-printed platform working as sampler and sensor. Anal. Chim. Acta 1130, 126–136. doi:10.1016/j.aca.2020.07.033
Castro, S. V. F., Rocha, R. G., Joao, A. F., Richter, E. M., and Munoz, R. A. A. (2022). Promising applications of additive-manufactured (3D-printed) electrochemical sensors for forensic chemistry. Braz. J. Anal. Chem. 9 (34), 79–105. doi:10.30744/brjac.2179-3425.RV-50-2021
Catalan-Carrio, R., Moreno-Sanz, G., Basabe-Desmonts, L., and Benito-Lopez, F. (2021). “Ionogel based material for the colorimetric detection of Δ9-tetrahydrocannabinol,” in Italian national conference on sensors.
Cellmark (2025a). Fire investigation//cellmark. Available online at: https://www.cellmarkforensics.co.uk/services/forensic-casework/fire-investigation/.
Cellmark (2025b). Gun shot residue GSR analysis//cellmark. Available online at: https://www.cellmarkforensics.co.uk/services/forensic-casework/gunshot-residue/.
CENSUS (2023). Crime in england and wales. Newport, United Kingdom: Office for National Statistics. Available online at: https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/bulletins/crimeinenglandandwales/yearendingdecember2023.
Ceto, X., Bonet-San-Emeterio, M., Ortiz-Aguayo, D., Rodriguez-Franch, E., and Del Valle, M. (2022). Experiences in the detection of drugs of abuse in smuggling seizures and forensic samples using electronic tongue principles. Int. Symposium Olfaction Electron. Nose, ISOEN 2022 - Proc., 1–4. doi:10.1109/isoen54820.2022.9789611
Cevallos-Cedeño, R. E., Agulló, C., Abad-Fuentes, A., Abad-Somovilla, A., and Mercader, J. V. (2021). Enzyme and lateral flow monoclonal antibody-based immunoassays to simultaneously determine spirotetramat and spirotetramat-enol in foodstuffs. Sci. Rep. 11 (1), 1–13. doi:10.1038/s41598-021-81432-z
Chadha, U., Bhardwaj, P., Agarwal, R., Rawat, P., Agarwal, R., Gupta, I., et al. (2022). Recent progress and growth in biosensors technology: a critical review. J. Industrial Eng. Chem. 109, 21–51. doi:10.1016/j.jiec.2022.02.010
Chaiendoo, K., Ngamdee, K., Limbut, W., Saiyasombat, C., Busayaporn, W., Ittisanronnachai, S., et al. (2021). Gold nanoparticle-based cascade reaction-triggered fluorogenicity for highly selective nitrite ion detection in forensic samples. Microchem. J. 168, 106470. doi:10.1016/j.microc.2021.106470
Chakraborty, M., Prusti, B., and Chakravarty, M. (2022). Small electron-rich isomeric solid-state emitters with variation in coplanarity and molecular packings: rapid and ultralow recognition of TNT. ACS Appl. Electron Mat. 4 (5), 2481–2489. doi:10.1021/acsaelm.2c00241
Chang, R., Wang, T., Liu, Q., Tang, J., and Wu, D. L. (2022b). Ag Nanoparticles@Agar gel as a 3D flexible and stable SERS substrate with ultrahigh sensitivity. LANGMUIR. 38 (45), 13822–13832. doi:10.1021/acs.langmuir.2c01966
Chang, Y. L., Su, C. J., Lu, L. C., and Wan, D. H. (2022a). Aluminum plasmonic nanoclusters for paper-based surface- enhanced Raman spectroscopy. Anal. Chem. 94 (47), 16319–16327. doi:10.1021/acs.analchem.2c03014
Chedid, A. A., Azevedo, L. S., Galaço, A., Casagrande, T. R., Serra, O. A., and de Oliveira, M. F. (2023). Voltammetric analysis of luminescent markers in gunshot residues. J. Forensic Sci. 68 (3), 780–789. doi:10.1111/1556-4029.15236
Che Marzuki, N. H., Mahat, N. A., Huyop, F., Aboul-Enein, H. Y., and Wahab, R. A. (2015). Sustainable production of the emulsifier methyl oleate by Candida rugosa lipase nanoconjugates. Food Bioprod. Process. 96, 211–220. doi:10.1016/j.fbp.2015.08.005
Chen, C. H., Wang, C. C., Ko, P. Y., and Chen, L. Y. (2020c). Nanomaterial-based adsorbents and optical sensors for illicit drug analysis. J. Food Drug Anal. 28, 655–677. doi:10.38212/2224-6614.1137
Chen, H., Wu, F. S., Xu, Y. B., Liu, Y., Song, L., Chen, X. J., et al. (2021a). Synthesis, characterization, and evaluation of selective molecularly imprinted polymers for the fast determination of synthetic cathinones. RSC Adv. 11 (47), 29752–29761. doi:10.1039/d1ra01330k
Chen, M., Burn, P. L., and Shaw, P. E. (2023d). Luminescence-based detection and identification of illicit drugs. Phys. Chem. Chem. Phys. 25 (19), 13244–13259. doi:10.1039/d3cp00524k
Chen, M., Huang, Y. Q., Miao, J. J., Fan, Y. X., and Lai, K. Q. (2023c). A highly sensitive surface-enhanced Raman scattering sensor with MIL-100 (Fe)/Au composites for detection of malachite green in fish pond water. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 292, 122432. doi:10.1016/j.saa.2023.122432
Chen, Q., Liu, J. X., Liu, S. J., Zhang, J., He, L. F., Liu, R. Y., et al. (2023a). Visual and rapid detection of nerve agent mimics in gas and solution phase by a simple fluorescent probe. Anal. Chem. 95, 4390–4394. doi:10.1021/acs.analchem.2c04891
Chen, Q., Qie, M., Peng, X., Chen, Y., and Wang, Y. (2020a). Immunochromatographic assay for melamine based on luminescent quantum dot beads as signaling probes. RSC Adv. 10 (6), 3307–3313. doi:10.1039/c9ra08350b
Chen, S. J., Zhu, Y. T., Han, J., Zhang, T. Y., Chou, R. W., Liu, A. P., et al. (2023b). Construction of a molecularly imprinted sensor modified with tea branch biochar and its rapid detection of norfloxacin residues in animal-derived foods. FOODS 12 (3), 544. doi:10.3390/foods12030544
Chen, T. H., Jiang, L. R., Hou, J. T., Wang, W., Zeng, L. T., and Bao, G. M. (2020b). A portable chromogenic and fluorogenic membrane sensor for ultrasensitive, specific and instantaneous visualizing of lethal phosgene. J. Mater Chem. A Mater 8 (46), 24695–24702. doi:10.1039/d0ta08333j
Chen, X. Z., Jia, L., Zhang, L. A., Li, Y. X., and Xu, J. (2022). Stimulus response of HNT-CDs-Eu nano-sensor: toward visual point-of-care monitoring of a bacterial spore biomarker with hypersensitive multi-color agarose gel based analytical device. COLLOIDS SURFACES A-PHYSICOCHEMICAL Eng. ASPECTS 639, 128356. doi:10.1016/j.colsurfa.2022.128356
Chen, Y. C., Hong, S. W., Wu, H. H. S., Wang, Y. L., and Chen, Y. F. (2021b). Rapid Formation of nanoclusters for detection of drugs in urine using surface-enhanced Raman spectroscopy. NANOMATERIALS 11 (7), 1789. doi:10.3390/nano11071789
Cheng, J., Fan, M. D., Wang, P. L., and Su, X. O. (2020). The twice-oxidized graphene oxide/gold nanoparticles composite SERS substrate for sensitive detection of clenbuterol residues in animal-origin food samples. Food Anal. Methods 13 (4), 902–910. doi:10.1007/s12161-020-01709-3
Cheng, W. W., Tang, X. Z., Zhang, Y., Wu, D., and Yang, W. J. (2021). Applications of metal-organic framework (MOF)-based sensors for food safety: enhancing mechanisms and recent advances. Trends Food Sci. Technol. 112, 268–282. doi:10.1016/j.tifs.2021.04.004
Chengyi, H., Sishi, Y., Chenying, D., Chenyue, W., Chen, L., and Huang, Z. (2020). Sensitive and on-site detection of glyphosate based on papain-stabilized fluorescent gold nanoclusters. Anal. Bioanal. Chem. 412 (29), 8177–8184. doi:10.1007/s00216-020-02952-7
Chiang, C., Lee, H., Chen, B., Lin, Y. C., Chao, Y., and Huang, Y. (2019). Using ambient mass spectrometry and LC-MS/MS for the rapid detection and identification of multiple illicit street drugs. J. Food Drug Anal. 27 (2), 439–450. doi:10.1016/j.jfda.2018.11.003
Chio, W. I. K., Liu, J., Jones, T., Perumal, J., Dinish, U. S., Parkin, I. P., et al. (2021). SERS multiplexing of methylxanthine drug isomers via host-guest size matching and machine learning. J. Mater Chem. C Mater 9 (37), 12624–12632. doi:10.1039/d1tc02004h
Cho, S., and Kim, Y. (2022). Donor-acceptor Stenhouse adduct formation for the simple and rapid colorimetric detection of amphetamine-type stimulants. SENSORS ACTUATORS B-CHEMICAL 355, 131274. doi:10.1016/j.snb.2021.131274
Choinska, M. K., Sestakova, I., Hrdlicka, V., Skopalova, J., Langmaier, J., Maier, V., et al. (2022). Electroanalysis of fentanyl and its new analogs: a review. BIOSENSORS-BASEL. 12 (1), 26. doi:10.3390/bios12010026
Chu, H. W., Unnikrishnan, B., Anand, A., Lin, Y. W., and Huang, C. C. (2020). Carbon quantum dots for the detection of antibiotics and pesticides. J. Food Drug Anal. 28 (4), 540–558. doi:10.38212/2224-6614.1269
Clarke, V., and Braun, V. (2017). Thematic analysis. J. Posit. Psychol. 12 (3), 297–298. doi:10.1080/17439760.2016.1262613
Cockbain, E., Bowers, K., and Dimitrova, G. (2018). Human trafficking for labour exploitation: the results of a two-phase systematic review mapping the European evidence base and synthesising key scientific research evidence. J. Exp. Criminol. 14 (3), 319–360. doi:10.1007/s11292-017-9321-3
Coleparmer (2025). Ultraviolet equipment from cole-parmer United Kingdom. Available online at: https://www.coleparmer.co.uk/c/ultraviolet-equipment.
College of Policing (2017). Forensics. Available online at: https://www.college.police.uk/app/investigation/forensics.
Cook, S., and Honeychurch, K. C. (2021). Forensic electrochemical presumptive blood test based on the voltammetric behaviour of methylene blue and whole blood. Anal. METHODS 13 (42), 4985–4993. doi:10.1039/d1ay01358k
Corporate Report (2022). Forensic Information Databases annual report 2021 to 2022 (accessible version) - GOV.UK. Available online at: https://www.gov.uk/government/publications/forensic-information-databases-annual-report-2021-to-2022/forensic-information-databases-annual-report-2021-to-2022-accessible-version.
Corporate Report (2023). Forensic Information Databases annual report 2021 to 2022 (accessible version) - GOV.UK. Available online at: https://www.gov.uk/government/publications/forensic-information-databases-annual-report-2021-to-2022/forensic-information-databases-annual-report-2021-to-2022-accessible-version.
Costa, B. M. F., Freitas, D. V., Sousa, F. L. N., Silva, K. D., Dias, J. M. M., Assis, A. M. L., et al. (2020). SATS@CdTe hierarchical structures emitting green to red colors developed for latent fingerprint applications. DYES PIGMENTS 180, 108483. doi:10.1016/j.dyepig.2020.108483
Costanzo, H., Gooch, J., and Frascione, N. (2023). Nanomaterials for optical biosensors in forensic analysis. Talanta 253, 123945. doi:10.1016/j.talanta.2022.123945
Couto, R. A. S., Coelho, C., Mounssef, B., Morais, S. F. D., Lima, C. D., dos Santos, W. T. P., et al. (2021). 3,4-Methylenedioxypyrovalerone (MDPV) sensing based on electropolymerized molecularly imprinted polymers on silver nanoparticles and carboxylated multi-walled carbon nanotubes. NANOMATERIALS 11 (2), 353. doi:10.3390/nano11020353
Couturier, C., Wada, A., Louis, K., Mistretta, M., Beitz, B., Povogui, M., et al. (2020). Characterization and analytical validation of a new antigenic rapid diagnostic test for Ebola virus disease detection. PLoS Negl. Trop. Dis. 14 (1), e0007965. doi:10.1371/journal.pntd.0007965
Cribbin, T. F. (2011). “Citation Chain Aggregation: an interaction model to support citation cycling,” in Proceedings of the 20th ACM international conference on Information and knowledge management, 2149–2152.
Criminal Damage and Arson Crime and Safety Statistics (2025). CrimeRate. Available online at: https://crimerate.co.uk/criminal-damage-arson.
Cupil-Garcia, V., Strobbia, P., Ran, Y., Crawford, B. M., Wang, H. neng, Zentella, R., et al. (2020). Fiberoptics SERS sensors using plasmonic nanostar probes for detection of molecular biotargets. spiedigitallibrary.Org. 1125. doi:10.1117/12.2552993
Curtis, V., and Cairncross, S. (2003). Effect of washing hands with soap on diarrhoea risk in the community: a systematic review. Lancet Infect. Dis. 3 (5), 275–281. doi:10.1016/s1473-3099(03)00606-6
Dagar, M., Yadav, S., Sai, V. V. R., Satija, J., and Bhatia, H. (2022). Emerging trends in point-of-care sensors for illicit drugs analysis. Talanta 238, 123048. doi:10.1016/j.talanta.2021.123048
Dagnaw, F. W., Feng, W., and Song, Q. H. (2020). Selective and rapid detection of nerve agent simulants by polymer fibers with a fluorescent chemosensor in gas phase. SENSORS ACTUATORS B-CHEMICAL 318, 127937. doi:10.1016/j.snb.2020.127937
Dahiwadkar, R., Kumar, H., and Kanvah, S. (2022). Detection of illicit GHB using AIE active fluorene containing α-Cyanostilbenes. J. Photochem. Photobiol. A-CHEMISTRY 427, 113844. doi:10.1016/j.jphotochem.2022.113844
Dahiya, K., Sharma, H., Biswas, L., and Verma, A. K. (2022). Nanotechnology in forensic science: extensive applications and new perspective. Indian J. Biochem. Biophys. 59 (12), 1144–1147. doi:10.56042/ijbb.v59i12.67319
Dai, S. J., Li, Q. J., Li, W., Zhang, Y. D., Dou, M. H., Xu, R. M., et al. (2022). Advances in functional photonic crystal materials for the analysis of chemical hazards in food. Compr. Rev. Food Sci. Food Saf. 21 (6), 4900–4920. doi:10.1111/1541-4337.13036
Dai, Z. H. (2023). Recent advances in the development of portable electrochemical sensors for controlled substances. SENSORS 23 (6), 3140. doi:10.3390/s23063140
Dang, Q. M., Gilmore, S. T., Lalwani, K., Conk, R. J., Simpson, J. H., and Leopold, M. C. (2022). Monolayer-Protected gold nanoparticles functionalized with halogen bonding capability- an avenue for molecular detection schemes. LANGMUIR 38 (16), 4747–4762. doi:10.1021/acs.langmuir.2c00381
Dare, E. O., Vendrell-Criado, V., Jiménez, M. C., Pérez-Ruiz, R., and Díaz, D. D. (2020). Fluorescent-Labeled octasilsesquioxane nanohybrids as potential materials for latent fingerprinting detection. CHEMISTRY-A Eur. J. 26 (58), 13142–13146. doi:10.1002/chem.202001908
Das, M. K., Mishra, T., Guria, S., Das, D., Sadhukhan, J., Sarker, S., et al. (2022). Fluorometric detection of a chemical warfare agent mimic (DCP) using a simple hydroxybenzothiazole-diaminomaleonitrile based chemodosimeter. NEW J. Chem. 47 (1), 250–257. doi:10.1039/d2nj04260f
Davis-Martin, R. E., Alessi, S. M., and Boudreaux, E. D. (2021). Alcohol use disorder in the age of technology: a review of wearable biosensors in alcohol use disorder treatment. Front. Psychiatry 12, 642813. doi:10.3389/fpsyt.2021.642813
de Faria, L. V., Rocha, R. G., Arantes, L. C., Ramos, D. L. O., Lima, C. D., Richter, E. M., et al. (2022). Cyclic square-wave voltammetric discrimination of the amphetamine-type stimulants MDA and MDMA in real-world forensic samples by 3D-printed carbon electrodes. Electrochim Acta 429, 141002. doi:10.1016/j.electacta.2022.141002
Defence Science and Technology Laboratory (2022). Fingermark visualisation source book v 3.0 the scientific rationale behind the processes within fingermark visualisation manual second edition 2022 fingermark visualisation source book v3.0. Available online at: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3.
de Lima, L. F., and de Araujo, W. R. (2022). Laser-scribed graphene on polyetherimide substrate: an electrochemical sensor platform for forensic determination of xylazine in urine and beverage samples. Microchim. ACTA 189 (12), 465. doi:10.1007/s00604-022-05566-1
DeMers, H. L., He, S., Pandit, S. G., Hannah, E. E., Zhang, Z., Yan, F., et al. (2020). Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. PLoS Negl. Trop. Dis. 14 (11), e0008817. doi:10.1371/journal.pntd.0008817
Department for Environment, Food and Rural Affairs (2025). Emissions of air pollutants in the UK – particulate matter (PM10 and PM2.5) - GOV. London, United Kingdom: Department for Environment, Food and Rural Affairs. Available online at: https://www.gov.uk/government/statistics/emissions-of-air-pollutants/emissions-of-air-pollutants-in-the-uk-particulate-matter-pm10-and-pm25.
De Rycke, E., Stove, C., Dubruel, P., De Saeger, S., and Beloglazova, N. (2020). Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens. Bioelectron. 169, 112579. doi:10.1016/j.bios.2020.112579
de Souza, F. L. A., Amorim, C. G., Araújo, A. D., Satínsky, D., Paim, A. P. S., and Montenegro, M. (2022). Malachite green optical sensor based on electrospun polyimide nanofiber. CHEMOSENSORS 10 (9), 348. doi:10.3390/chemosensors10090348
Dhar, B. C., Roche, C. E., and Levine, J. F. (2021). Developing mitochondrial DNA field-compatible tests. Crit. Rev. Environ. Sci. Technol. 52, 3137–3177. doi:10.1080/10643389.2021.1904709
Dhiman, S., Ahmad, M., Kumar, G., Luxami, V., Singh, P., and Kumar, S. (2021). Ratiometric chemosensor for differentiation of TNP from other NACs using distinct blue fluorescence and visualization of latent fingerprints. J. Mater Chem. C Mater 9 (3), 1097–1106. doi:10.1039/d0tc04795c
Dias, B. C., Batista, A. D., and Petruci, J. F. D. (2021). μOPTO: a microfluidic paper-based optoelectronic tongue as presumptive tests for the discrimination of alkaloid drugs for forensic purposes. Anal. Chim. Acta 1187, 339141. doi:10.1016/j.aca.2021.339141
Dief, E. M., Hoffmann, N., and Darwish, N. (2022). Electrochemical detection of dinitrobenzene on silicon electrodes: toward explosives sensors. SURFACES 5 (1), 218–227. doi:10.3390/surfaces5010015
Díez-Pascual, A. M., Cruz, D. L., and Redondo, A. L. (2022). Advanced carbon-based polymeric nanocomposites for forensic analysis. Polym. (Basel) 14 (17), 3598. doi:10.3390/polym14173598
Ding, L., Peng, D., Wang, R., and Li, Q. (2021a). A user-secure and highly selective enhancement of latent fingerprints by magnetic composite powder based on carbon dot fluorescence. J. Alloys Compd. 856, 158160. doi:10.1016/j.jallcom.2020.158160
Ding, N. N., Liu, K., Qi, Y. Y., Shang, C. D., Chang, X. M., and Fang, Y. (2021b). Methamphetamine detection enabled by a fluorescent carborane derivative of perylene monoimide in film state. SENSORS ACTUATORS B-CHEMICAL 340, 129964. doi:10.1016/j.snb.2021.129964
Ding, Y. R., Zhang, N., Zhao, J. Q., Lv, H. Y., Wang, X., Zhao, B., et al. (2022). Determination of antihypertensive drugs irbesartan and doxazosin mesylate in healthcare products and urine samples using surface-enhanced Raman scattering. Anal. Bioanal. Chem. 414 (27), 7813–7822. doi:10.1007/s00216-022-04315-w
Ding, Z. X., Wang, C., Song, X., Li, N., Zheng, X. Y., Wang, C. X., et al. (2023). Strong π-metal interaction enables liquid interfacial nanoarray–molecule Co-assembly for Raman sensing of ultratrace fentanyl doped in heroin, ketamine, morphine, and real urine. ACS Appl. Mater Interfaces 15 (9), 12570–12579. doi:10.1021/acsami.2c22607
Divya, V., Agrawal, B., Srivastav, A., Bhatt, P., Bhowmik, S., Agrawal, Y. K., et al. (2020). Fluorescent amphiphilic silica nanopowder for developing latent fingerprints. Aust. J. Forensic Sci. 52 (3), 354–367. doi:10.1080/00450618.2018.1533036
Dokuzparmak, E., Brown, K., and Dennany, L. (2021). Electrochemiluminescent screening for methamphetamine metabolites. Analyst 146 (10), 3336–3345. doi:10.1039/d1an00226k
Dragan, A. M., Truta, F. M., Tertis, M., Florea, A., Schram, J., Cernat, A., et al. (2021). Electrochemical fingerprints of illicit drugs on graphene and multi-walled carbon nanotubes. Front. Chem. 9, 641147. doi:10.3389/fchem.2021.641147
Dreier, L. B., Kölbl, C., Jeuk, V., Beleites, C., Köhntopp, A., and Duschek, F. (2022). Setup and analysis of a mid-infrared stand-off system to detect traces of explosives on fabrics. Sensors 22 (20), 7839. doi:10.3390/s22207839
Drug Testing Clinics (2025). “Drug and drink driving UK - a rising problem,”. United Kingdom: Drug Testing Clinics. Available online at: https://www.drugtestingclinics.co.uk/drug-and-drink-driving-a-problem-on-the-rise/.
DrugWipe (2025). DrugWipe is the premier drug test in the UK. Available online at: https://www.dtecinternational.com/drug-testing.
Duan, L. X., Zheng, Q. S., and Tu, T. (2022a). Instantaneous high-resolution visual imaging of latent fingerprints in water using color-tunable AIE pincer complexes. Adv. Mater. 34 (35), e2202540. doi:10.1002/adma.202202540
Duan, N., Chen, X. W., Lin, X. F., Ying, D. C., Wang, Z. P., Yuan, W. B., et al. (2023). Paper-based fluorometric sensing of malachite green using synergistic recognition of aptamer-molecularly imprinted polymers and luminescent metal-organic frameworks. SENSORS ACTUATORS B-CHEMICAL 384, 133665. doi:10.1016/j.snb.2023.133665
Duan, N., Qi, S., Guo, Y., Xu, W., Wu, S., and Wang, Z. (2020). Fe3O4@Au@Ag nanoparticles as surface-enhanced Raman spectroscopy substrates for sensitive detection of clenbuterol hydrochloride in pork with the use of aptamer binding. LWT, 134. doi:10.1016/j.lwt.2020.110017
Duan, N., Ren, K. X., Lyu, C., Wang, Z. P., and Wu, S. J. (2022b). Discovery and optimization of an aptamer and its sensing ability to amantadine based on SERS via binary metal nanoparticles. J. Agric. Food Chem. 70 (46), 14805–14815. doi:10.1021/acs.jafc.2c06681
Dube, S., Satish, S., and Rawtani, D. (2023). Aptasensors in environmental forensics: tracking the silent killers. WILEY Interdiscip. Rev. FORENSIC Sci. 5 (4). doi:10.1002/wfs2.1482
Dutta, B., Hazra, A., Dey, A., Sinha, C., Ray, P. P., Banerjee, P., et al. (2020). Construction of a succinate-bridged Cd(II)-Based two-dimensional coordination polymer for efficient optoelectronic device fabrication and explosive sensing application. Cryst. Growth Des. 20 (2), 765–776. doi:10.1021/acs.cgd.9b01181
Düzmen, S., and Aslanoglu, M. (2022). Tungsten doped neodymium oxide-carbon nanotubes based voltammetric platform as a highly efficient electrocatalyst and sensing material for monitoring albuterol. J. Electroanal. Chem. 922, 116717. doi:10.1016/j.jelechem.2022.116717
Dwivedi, A., Anuradha, S. M., Srivastava, A., Kumar, R., and Srivastava, S. K. (2023). Enhance photoluminescence properties of Ca-Eu:Y2O3@SiO2 core–shell nanomaterial for the advanced forensic and LEDs applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 299, 122782. doi:10.1016/j.saa.2023.122782
El-Akaad, S., De Saeger, S., and Beloglazova, N. (2021). Molecularly imprinted polymer based capacitive sensing of a specific Leuckart marker 4-methyl-5-phenylpyrimidine in wastewater. SENSORS ACTUATORS B-CHEMICAL 343, 130116. doi:10.1016/j.snb.2021.130116
Elbalkiny, H. T., and Samir, A. (2022). Green potentiometric electrode for determination of salbutamol in biological samples. Anal. Biochem. 659, 114949. doi:10.1016/j.ab.2022.114949
Elbasuney, S., Baraka, A., and El-Sharkawy, Y. H. (2020a). Novel laser induced fluorescence with hyperspectral imaging of amplifying fluorescent melamine resin for TNT vapor detection. Opt. Laser Technol. 132, 106488. doi:10.1016/j.optlastec.2020.106488
Elbasuney, S., El-Sharkawy, Y. H., El-Sayyad, G. S., and Gobara, M. (2020b). Surface modified colloidal silica nanoparticles: novel aspect for complete identification of explosive materials. Talanta 211, 120695. doi:10.1016/j.talanta.2019.120695
Elgabry, M., Nesbeth, D., and Johnson, S. D. (2020). A systematic review of the criminogenic potential of synthetic biology and routes to future crime prevention. Front. Bioeng. Biotechnol. 8, 571672. doi:10.3389/fbioe.2020.571672
Elmizadeh, H., Bardajee, G. R., and Moaddeli, A. (2023). Ultrasensitive and rapid detection of methamphetamine in forensic biological fluids using fluorescent apta-nanobiosensors based on CdTe quantum dots. Microchem. J. 189, 108519. doi:10.1016/j.microc.2023.108519
ENFSI (2021). Best practice manual for the investigation of fires and explosions. Available online at: www.enfsi.eu.
Environmentagency (2023). Waste criminals targeted on Environment Agency day of action – creating a better place. Available online at: https://environmentagency.blog.gov.uk/2023/01/16/waste-criminals-targeted-on-environment-agency-day-of-action/.
Erturan, A. M., Durmaz, H., and Gultekin, S. S. (2023). Simultaneous detection of molecules with the surface-enhanced infrared absorption sensor platform based on disk antennas with double spacer. Spectrosc. Lett. 56, 283–292. doi:10.1080/00387010.2023.2208650
Esmaelpourfarkhani, M., Danesh, N. M., Ramezani, M., Alibolandi, M., Abdolabadi, A. K., Abnous, K., et al. (2023). Split aptamer-based fluorescent biosensor for ultrasensitive detection of cocaine using N-methyl mesoporphyrin IX as fluorophore. Microchem. J. 190, 108630. doi:10.1016/j.microc.2023.108630
Estevez, A., Perez, N., Casanova-Chafer, J., Llobet, E., and Beriain, A. (2022). RFID gas sensor for in-field detection of chemical threats: evaluation of batteryless discontinuous operation. IEEE Sensors, 1–4. doi:10.1109/sensors52175.2022.9967213
Evidential Drug Identification Testing (2023). Good practice guide-2023 handling instructions update history. London, United Kingdom: National Police Chiefs’ Council: Forensic Capability Network.
Fakayode, S. O., Lisse, C., Medawala, W., Brady, P. N., Bwambok, D. K., Anum, D., et al. (2023). Fluorescent chemical sensors: applications in analytical, environmental, forensic, pharmaceutical, biological, and biomedical sample measurement, and clinical diagnosis. Appl. Spectrosc. Rev. 59, 1–89. doi:10.1080/05704928.2023.2177666
Fan, B., Wang, Y. C., Li, Z. H., Xun, D. J., Dong, J., Zhao, X. W., et al. (2022). Si@Ag@PEI substrate-based SERS sensor for rapid detection of illegally adulterated sulfur dioxide in traditional Chinese medicine. Talanta 238, 122988. doi:10.1016/j.talanta.2021.122988
Fan, Z. A., Chen, X., Kong, R. R., Lu, Y. Q., Ma, R. L., Wu, J. W., et al. (2023). Strongly fluorescent conjugated polymer nanoparticles in aqueous colloidal solution for universal, efficient and effective development of sebaceous and blood fingerprints. J. Colloid Interface Sci. 642, 658–668. doi:10.1016/j.jcis.2023.03.173
Fang, W., Zhang, B., Han, F. Y., Qin, Z. N., Feng, Y. Q., Hu, J. M., et al. (2020). On-site and quantitative detection of trace methamphetamine in urine/serum samples with a surface-enhanced Raman scattering-active microcavity and rapid pretreatment device. Anal. Chem. 92 (19), 13539–13549. doi:10.1021/acs.analchem.0c03041
Fang, Y. L., Wang, Z., Quan, Q. Q., Li, Z. D., Pan, K. L., Lei, Y., et al. (2023). Developing an ultrasensitive immunochromatographic assay for authentication of an emergent fraud aminopyrine in herbal tea. Food Chem. 406, 135065. doi:10.1016/j.foodchem.2022.135065
Far, B. F., Naimi-Jamal, M. R., Jahanbakhshi, M., Mohammed, H. T., Altimari, U. S., and Ansari, J. (2022). Poly(3-thienylboronic acid) coated magnetic nanoparticles as a magnetic solid-phase adsorbent for extraction of methamphetamine from urine samples. J. Dispers. Sci. Technol. 44, 2723–2733. doi:10.1080/01932691.2022.2124169
Fedick, P. W., Pu, F., Morato, N. M., and Cooks, R. G. (2020). Identification and confirmation of fentanyls on paper using portable surface enhanced Raman spectroscopy and paper spray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 31 (3), 735–741. doi:10.1021/jasms.0c00004
Feng, W., Liu, X. J., Xue, M. J., and Song, Q. H. (2023). Bifunctional fluorescent probes for the detection of mustard gas and phosgene. Anal. Chem. 95, 1755–1763. doi:10.1021/acs.analchem.2c05178
Ferrari, A. G. M., Crapnell, R. D., and Banks, C. E. (2021). Electroanalytical overview: electrochemical sensing platforms for food and drink safety. BIOSENSORS-BASEL. 11 (8), 291. doi:10.3390/bios11080291
Ferrari, A. G. M., Elbardisy, H. M., Silva, V., Belal, T. S., Talaat, W., Daabees, H. G., et al. (2020). The influence of lateral flake size in graphene/graphite paste electrodes: an electroanalytical investigation. Anal. METHODS 12 (16), 2133–2142. doi:10.1039/d0ay00169d
Ferreira, P. A., de Oliveira, F. M., de Melo, E. I., de Carvalho, A. E., Lucca, B. G., Ferreira, V. S., et al. (2021b). Multi sensor compatible 3D-printed electrochemical cell for voltammetric drug screening. Anal. Chim. Acta 1169, 338568. doi:10.1016/j.aca.2021.338568
Ferreira, R. G., Paula, R. B. A., Okuma, A. A., and Costa, L. M. (2021a). Fingerprint development techniques: a review. Rev. VIRTUAL De. QUIMICA. 13 (6), 1278–1302. doi:10.21577/1984-6835.20210083
Fingerprint Identification (2024). “Biometric authentication,”. Tokyo, Japan: NEC Corporation. Available online at: https://www.nec.com/en/global/solutions/biometrics/fingerprint/index.html.
Firmino, E., da Silva Oliveira, L., Borges Martins, F. C., Filho, J. C. S., Barbosa, H. P., Andrade, A. A., et al. (2021). Eu3+-doped SiO2–Y2O3 containing Sr2+ for application as fingerprinting detector. Opt. Mater (Amst). 114, 111018. doi:10.1016/j.optmat.2021.111018
Food Allergen Testing (2025). Food safety neogen. Available online at: https://www.neogen.com/en-gb/categories/allergens/.
Food Safety News (2025). UK’s food crime unit reveals risks and progress on investigations. Chicago, IL: Food Safety News. Available online at: https://www.foodsafetynews.com/2022/12/uks-food-crime-unit-reveals-risks-and-progress-on-investigations/#google_vignette.
Food Standards Agency (2025a). “The cost of food crime phase 2 - results,”. London, United Kingdom: Food Standards Agency (FSA). Available online at: https://www.food.gov.uk/research/the-cost-of-food-crime-phase-2-results.
Food Standards Agency (2025b). “Food crime,”. London, United Kingdom: Food Standards Agency. Available online at: https://www.food.gov.uk/safety-hygiene/food-crime.
Food Standards Agency (2025c). Food standards agency. Available online at: https://www.food.gov.uk/.
Forbes, T. P., Krauss, S. T., and Gillen, G. (2020). Trace detection and chemical analysis of homemade fuel-oxidizer mixture explosives: emerging challenges and perspectives. TRAC-TRENDS Anal. Chem. 131, 116023. doi:10.1016/j.trac.2020.116023
Forensic Body Fluid Analysis Services (2024). Forensic access. Available online at: https://www.forensic-access.co.uk/forensic-services/biology/body-fluid-analysis/.
Forensics Library (2024). “Bodily fluids analysis,”. United Kingdom: The Forensics Library. Available online at: https://aboutforensics.co.uk/bodily-fluids-analysis/.
Forensic Technology Center of Excellence (2021). Advancing fire scene investigations with field portable technologies. Available online at: https://forensiccoe.org/advancing-fire-scene-investigations/.
Fouad, R., and Saif, M. (2020). Synthesis, spectroscopic and photoluminescence studies of novel Eu3+ nanophosphor complex as fluorescent sensor for highly sensitive detection of latent fingerprints and anti-counterfeiting. J. Mol. Struct. 1217, 128472. doi:10.1016/j.molstruc.2020.128472
Fouda-Mbanga, B. G., Pillay, K., and Tywabi-Ngeva, Z. (2023). Novel development of zinc oxide-coated carbon nanoparticles from pineapple leaves using sol gel method for optimal adsorption of Cu2+ and reuse in latent fingerprint application. Environ. Sci. Pollut. Res. 31, 38801–38820. doi:10.1007/s11356-023-25474-y
Fouda-Mbanga, B. G., Prabakaran, E., and Pillay, K. (2022). Cd2+ ion adsorption and re-use of spent adsorbent with N-doped carbon nanoparticles coated on cerium oxide nanorods nanocomposite for fingerprint detection. Chem. Phys. IMPACT 5, 100083. doi:10.1016/j.chphi.2022.100083
Fularz, A., Almohammed, S., and Rice, J. H. (2021). SERS enhancement of porphyrin-type molecules on metal-free cellulose-based substrates. ACS Sustain Chem. Eng. 9 (49), 16808–16819. doi:10.1021/acssuschemeng.1c06685
Fulgencio, A. C. C., Resende, G. A. P., Teixeira, M. C. F., Botelho, B. G., and Sena, M. M. (2022). Screening method for the rapid detection of diethylene glycol in beer based on chemometrics and portable near-infrared spectroscopy. Food Chem. 391, 133258. doi:10.1016/j.foodchem.2022.133258
Galan-Malo, P., Pellicer, S., Pérez, M. D., Sánchez, L., Razquin, P., and Mata, L. (2019). Development of a novel duplex lateral flow test for simultaneous detection of casein and β-lactoglobulin in food. Food Chem. 293, 41–48. doi:10.1016/j.foodchem.2019.04.039
Ganesan, M., and Nagaraaj, P. (2020). Quantum dots as nanosensors for detection of toxics: a literature review. Anal. METHODS 12 (35), 4254–4275. doi:10.1039/d0ay01293a
Gao, R., Li, D., Zhang, Q., Zheng, S., Ren, X., and Deng, W. (2021). GNPs-QDs core–satellites assembly: trimodal platform for on-site identification and detection of TNT in complex media. Sens. Actuators B Chem. 328, 128960. doi:10.1016/j.snb.2020.128960
Gao, R., Song, X., Zhan, C., Weng, C., Cheng, S., Guo, K., et al. (2020). Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sensors Actuators B Chem. 314, 128081. doi:10.1016/j.snb.2020.128081
Garcia-Cruz, A., Ahmad, O. S., Alanazi, K., Piletska, E., and Piletsky, S. A. (2020). Generic sensor platform based on electro-responsive molecularly imprinted polymer nanoparticles (e-NanoMIPs). Microsystems and Nanoeng. 6 (1), 83–89. doi:10.1038/s41378-020-00193-3
Garima, I., Sachdev, A., and Matai, I. (2022a). An electrochemical sensor based on cobalt oxyhydroxide nanoflakes/reduced graphene oxide nanocomposite for detection of illicit drug-clonazepam. J. Electroanal. Chem. 919, 116537. doi:10.1016/j.jelechem.2022.116537
Garima, P. V., Mehta, S. K., and Sharma, S. (2022b). Selective response studies of graphene materials with forensic relevant drugs through fluorescence spectroscopy. J. Anal. Chem. 77 (4), 495–504. doi:10.1134/s1061934822040062
Garrido, E., Alfonso, M., de Greñu, B. D., Lozano-Torres, B., Parra, M., Gaviña, P., et al. (2020). Nanosensor for sensitive detection of the new psychedelic drug 25I-NBOMe. CHEMISTRY-A Eur. J. 26 (13), 2813–2816. doi:10.1002/chem.201905688
Garrido, E., Hernández-Sigüenza, G., Climent, E., Marcos, M. D., Rurack, K., Gaviña, P., et al. (2023). Strip-based lateral flow-type indicator displacement assay for γ-hydroxybutyric acid (GHB) detection in beverages. SENSORS ACTUATORS B-CHEMICAL 377, 133043. doi:10.1016/j.snb.2022.133043
Gasser, A., Shcheglov, A., Lapauw, T., Dries, T. V. den, Ingelberts, H., Hoving, W., et al. (2022). Miniaturized time-resolved fluorescence spectrometer system, 12008. Bellingham, WA: SPIE (The International Society for Optics and Photonics), 23. doi:10.1117/12.2609535
Gaudin, V. (2021). Contribution of nanomaterials to the development of electrochemical aptasensors for the detection of antimicrobial residues in food products. CHEMOSENSORS 9 (4), 69. doi:10.3390/chemosensors9040069
Gautam, R., Chaturvedi, D., Sil, S., Kuhar, N., Singh, S., and Umapathy, S. (2022). Characterization of aggregating agents towards sensitive optical detection of tryptophan using lab-on-a-chip. Photonics 9 (9), 648. doi:10.3390/photonics9090648
Ge, W., Suryoprabowo, S., Kuang, H., Liu, L., and Song, S. (2020). Rapid detection of triazophos in cucumber using lateral flow immunochromatographic assay. Food Agric. Immunol. 31 (1), 1051–1060. doi:10.1080/0954010520201816919
Geballa-Koukoula, A., Ross, G. M. S., Bosman, A. J., Zhao, Y., Zhou, H., Nielen, M. W. F., et al. (2023). Best practices and current implementation of emerging smartphone-based (bio)sensors-Part 2: development, validation, and social impact. TRAC-TRENDS Anal. Chem. 161, 116986. doi:10.1016/j.trac.2023.116986
Geng, L. J., Liu, M. Y., Huang, J. C., Li, F. L., Zhang, Y. Y., Guo, Y. M., et al. (2023). Novel dual-signal SiO2-COOH@MIPs electrochemical sensor for highly sensitive detection of chloramphenicol in milk. SENSORS 23 (3), 1346. doi:10.3390/s23031346
Geng, P. F., Sun, S. J., Wang, X. M., Ma, L., Guo, C., Li, J. T., et al. (2022). Rapid and sensitive detection of amphetamine by SERS-based competitive immunoassay coupled with magnetic separation. Anal. METHODS 14 (26), 2608–2615. doi:10.1039/d2ay00581f
Geng, Z., Zhang, X., Fan, Z., Lv, X., Su, Y., and Chen, H. (2017). Recent progress in optical biosensors based on smartphone platforms. Sensors 17 (11), 2449. doi:10.3390/s17112449
Ghorbanizamani, F., Moulahoum, H., Celik, E. G., and Timur, S. (2022). Ionic liquid-hydrogel hybrid material for enhanced electron transfer and sensitivity towards electrochemical detection of methamphetamine. J. Mol. Liq. 361, 119627. doi:10.1016/j.molliq.2022.119627
Ghubish, Z., and El-Kemary, M. (2022). Influence of Li+ doping on the luminescence performance of green nano-phosphor CaWO4:Tb3+ as a sweat pores fingerprint and cheiloscopy sensor. J. INDUSTRIAL Eng. Chem. 107, 61–74. doi:10.1016/j.jiec.2021.11.026
Ghubish, Z., Saif, M., Hafez, H., Mahmoud, H., Kamal, R., and El-Kemary, M. (2020). Novel red photoluminescence sensor based on Europium ion doped calcium hydroxy stannate CaSn(OH)6:Eu+3 for latent fingerprint detection. J. Mol. Struct. 1207, 127840. doi:10.1016/j.molstruc.2020.127840
Gill, A., Hickey, B., Zhong, W., and Hooley, R. (2020). Selective sensing of THC and related metabolites in biofluids by host:guest arrays. ChemComm R. Soc. Chem. 56, 4352–4355. doi:10.1039/d0cc01489c
Girmatsion, M., Mahmud, A., Abraha, B., Xie, Y. F., Cheng, Y. L., Yu, H., et al. (2021). Rapid detection of antibiotic residues in animal products using surface-enhanced Raman Spectroscopy: a review. Food control. 126, 108019. doi:10.1016/j.foodcont.2021.108019
Glasscott, M. W., Vannoy, K. J., Fernando, P., Kosgei, G. K., Moores, L. C., and Dick, J. E. (2020). Electrochemical sensors for the detection of fentanyl and its analogs: foundations and recent advances. TRAC-TRENDS Anal. Chem. 132, 116037. doi:10.1016/j.trac.2020.116037
Goel, R., Awasthi, V., Bhardwaj, V., and Dubey, S. K. (2022). “Flexible and cost-effective substrate for detection of analytes using surface enhanced Raman spectroscopy (SERS),” in Proc. SPIE 12131, nanophotonics IX, 103.
Gonzalez, M., Gorziza, R. P., Mariotti, K. D., and Limberger, R. P. (2020). Methodologies applied to fingerprint analysis. J. Forensic Sci. 65 (4), 1040–1048. doi:10.1111/1556-4029.14313
González-Hernández, J., Moya-Alvarado, G., Alvarado-Gámez, A. L., Urcuyo, R., Barquero-Quirós, M., and Arcos-Martínez, M. J. (2022b). Electrochemical biosensor for quantitative determination of fentanyl based on immobilized cytochrome c on multi-walled carbon nanotubes modified screen-printed carbon electrodes. Microchim. ACTA 189 (12), 483. doi:10.1007/s00604-022-05578-x
González-Hernández, J., Ott, C. E., Arcos-Martínez, M. J., Colina, A., Heras, A., Alvarado-Gámez, A. L., et al. (2022a). Rapid determination of the “legal highs” 4-MMC and 4-MEC by spectroelectrochemistry: simultaneous cyclic voltammetry and in situ surface-enhanced Raman spectroscopy. SENSORS 22 (1). doi:10.3390/s22010295
Gooch, J., Daniel, B., and Frascione, N. (2014). Application of fluorescent substrates to the in situ detection of prostate specific antigen. Talanta 125, 210–214. doi:10.1016/j.talanta.2014.02.021
Gove, R. J. (2014). “Complementary metal-oxide-semiconductor (CMOS) image sensors for mobile devices,” in High performance silicon imaging. Editor D. Durini (Cambridge, United Kingdom: Woodhead Publishing (an imprint of Elsevier)), 191–234.
Gozdzialski, L., Wallace, B., and Hore, D. (2023). Point-of-care community drug checking technologies: an insider look at the scientific principles and practical considerations. Harm Reduct. J. 20 (1), 39. doi:10.1186/s12954-023-00764-3
Grothe, R. A., Lobato, A., Mounssef, B., Tasić, N., Braga, A. A. C., Maldaner, A. O., et al. (2021). Electroanalytical profiling of cocaine samples by means of an electropolymerized molecularly imprinted polymer using benzocaine as the template molecule. Analyst. 146 (5), 1747–1759. doi:10.1039/d0an02274h
Guan, T., Jiang, Z., Liang, Z. Q., Liu, Y. J., Huang, W. J., Li, X. M., et al. (2022). Single-emission dual-enzyme magnetosensor for multiplex immunofluorometric assay of adulterated colorants in chili seasoning. Food Chem. 366, 130594. doi:10.1016/j.foodchem.2021.130594
Guidance (2014). How we respond to marine pollution incidents - GOV. Newcastle upon Tyne, United Kingdom: Marine Management Organisation (MMO). Available online at: https://www.gov.uk/guidance/how-we-respond-to-marine-pollution-incidents.
Guleria, A., Chavan, A. P., Neogy, S., Gandhi, V. V., Kunwar, A., Debnath, A. K., et al. (2020). Glutathione-Functionalized organosilicon oxide nanoparticles for bioimaging and forensics. ACS Appl. Nano Mater 3 (6), 5123–5138. doi:10.1021/acsanm.0c00420
Guo, G. X., Wang, T., Ding, X., Wang, H. T., Wu, Q. L., Zhang, Z. W., et al. (2022a). Fluorescent lanthanide metal-organic framework for rapid and ultrasensitive detection of methcathinone in human urine. Talanta 249, 123663. doi:10.1016/j.talanta.2022.123663
Guo, J. X., Liu, Y., Ju, H. X., and Lu, G. M. (2022b). From lab to field: surface-enhanced Raman scattering-based sensing strategies for on-site analysis. TRAC-TRENDS Anal. Chem. 146, 116488. doi:10.1016/j.trac.2021.116488
Guo, L., Wang, Z., Xu, X., Xu, L., Kuang, H., Xiao, J., et al. (2020). Europium nanosphere-based fluorescence strip sensor for ultrasensitive and quantitative determination of fumonisin B1. Anal. Methods 12 (43), 5229–5235. doi:10.1039/d0ay01734e
Guo, Y., Pan, X., Cheng, Y., Yu, H., Xie, Y., Yang, F., et al. (2021). Orientational screening of ssDNA-templated silver nanoclusters and application for bleomycin assay. Colloid Polym. Sci. 299 (10), 1643–1649. doi:10.1007/s00396-021-04890-x
Guria, U. N., Maiti, K., Ali, S. S., Gangopadhyay, A., Samanta, S. K., Roy, K., et al. (2020). An organic nanofibrous polymeric composite for ratiometric detection of diethyl chlorophosphate (DCP) in solution and vapor. ChemistrySelect 5 (13), 3770–3777. doi:10.1002/slct.202000179
Gurusamy, L., Karuppasamy, L., Anandan, S., Liu, C. H., and Wu, J. (2022). Perovskite nanocomposite of defective yolk-shell BaHo2Co3O8-xfor electrochemical sensing of ractopamine in pork meat sample. Mater Today Chem. 25, 100965. doi:10.1016/j.mtchem.2022.100965
Gusenbauer, M., and Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 11 (2), 181–217. doi:10.1002/jrsm.1378
Ha, S., Kim, J., Lee, S., Yoo, D., Bae, J., Kim, W. K., et al. (2022). In situ, real-time, colorimetric detection of γ-hydroxybutyric acid (GHB) using self-protection products coated with chemical receptor-embedded hydrogel. Biosens. Bioelectron. 207, 114195. doi:10.1016/j.bios.2022.114195
Haghighi, M., Shahlaei, M., Irandoust, M., and Hassanpour, A. (2020). New and sensitive sensor for voltammetry determination of Methamphetamine in biological samples. J. Mater. Sci. Mater. Electron. 31 (14), 10989–11000. doi:10.1007/s10854-020-03647-6
Hakeem, M. K., Shah, A., Nisar, J., Iftikhar, F. J., Khan, S. B., and Shah, I. (2022). Electrochemical sensing platform for the detection and degradation studies of metanil yellow. J. Electrochem Soc. 169 (5), 056503. doi:10.1149/1945-7111/ac6981
Han, Q., Liang, Y., Li, Z. H., Song, Y. L., Wang, Y. X., and Zhang, X. R. (2022). Tunable multicolor emission based on dual-mode luminescence Y2O3: Eu@SiO2/Y2O3: Er(Tm/Yb) composite nanomaterials. J. Lumin 241, 118541. doi:10.1016/j.jlumin.2021.118541
Han, S., Sun, R. N., Zhao, L., Yan, C., and Chu, H. T. (2023). Molecularly imprinted electrochemical sensor based on synergistic interaction of honeycomb-like Ni-MOF decorated with AgNPs and N-GQDs for ultra-sensitive detection of olaquindox in animal-origin food. Food Chem. 418, 136001. doi:10.1016/j.foodchem.2023.136001
Han, S., Zhang, C., Lin, S., Sha, X., and Hasi, W. (2021). Sensitive and reliable identification of fentanyl citrate in urine and serum using chloride ion-treated paper-based SERS substrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 251, 119463. doi:10.1016/j.saa.2021.119463
Han, S., Zhang, C., Sha, X. Y., Li, N., Hasi, W., and Zhang, Y. H. (2020). Effective SERS method for identification of dexmedetomidine hydrochloride in biological samples. Anal. METHODS 12 (12), 1662–1669. doi:10.1039/d0ay00019a
Hang, Y. J., Boryczka, J., and Wu, N. Q. (2022). Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem. Soc. Rev. 51 (1), 329–375. doi:10.1039/c9cs00621d
Hao, H. M., Ye, Z. J., Dai, H., Liu, C., Yi, A. H., Xu, B. J., et al. (2021). Pyrenyl-based aggregation-induced emission luminogen for highly sensitive and selective detection of 2,4,6-trinitrotoluene in water. ChemistrySelect 6 (43), 12182–12187. doi:10.1002/slct.202103098
Harathi, J., and Thenmozhi, K. (2022). Water-soluble ionic liquid as a fluorescent probe towards distinct binding and detection of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol in aqueous medium. Chemosphere 286, 131825. doi:10.1016/j.chemosphere.2021.131825
Harbison, S., and Fleming, R. (2016). Forensic body fluid identification: state of the art. Res. Rep. Forensic Med. Sci. 6, 11–23. doi:10.2147/rrfms.s57994
Hardy, M., Kelleher, L., Gomes, P. D., Buchan, E., Chu, H. O. M., and Oppenheimer, P. G. (2022). Methods in Raman spectroscopy for saliva studies - a review. Appl. Spectrosc. Rev. 57 (3), 177–233. doi:10.1080/05704928.2021.1969944
Harish, V., Tewari, D., Gaur, M., Yadav, A. B., Swaroop, S., Bechelany, M., et al. (2022). Review on nanoparticles and nanostructured materials: bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 12 (3), 457. doi:10.3390/nano12030457
Harsha, K. G., Appalanaidu, E., Rao, B. A., Baggi, T. R., and Rao, V. J. (2020). ON–OFF fluorescent imidazole derivative for sensitive and selective detection of copper(II) ions. Russ. J. Org. Chem. 56 (1), 158–168. doi:10.1134/s1070428020010248
Harshey, A., Srivastava, A., Das, T., Nigam, K., Shrivastava, R., and Yadav, V. K. (2021). Trends in gunshot residue detection by electrochemical methods for forensic purpose. J. Analysis Test. 5 (3), 258–269. doi:10.1007/s41664-020-00152-x
He, D., Wu, Z., Cui, B., Xu, E., and Jin, Z. (2019). Establishment of a dual mode immunochromatographic assay for Campylobacter jejuni detection. Food Chem. 289, 708–713. doi:10.1016/j.foodchem.2019.03.106
He, F., Yang, J. Y., Zou, T. T., Xu, Z. L., Tian, Y. X., Sun, W. J., et al. (2021). A gold nanoparticle-based immunochromatographic assay for simultaneous detection of multiplex sildenafil adulterants in health food by only one antibody. Anal. Chim. Acta 1141, 1–12. doi:10.1016/j.aca.2020.10.032
He, X., Liu, Y., Liu, Y., Cui, S., Liu, W., and Li, Z. (2020a). Controllable fabrication of Ag-NP-decorated porous ZnO nanosheet arrays with superhydrophobic properties for high performance SERS detection of explosives. CrystEngComm. 22 (4), 776–785. doi:10.1039/c9ce01430f
He, X. C., Yang, S. J., Xu, T. L., Song, Y. C., and Zhang, X. J. (2020b). Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. Biosens. Bioelectron. 152, 112013. doi:10.1016/j.bios.2020.112013
Higgins, S., and Kurouski, D. (2023). Surface-enhanced Raman spectroscopy enables highly accurate identification of different brands, types and colors of hair dyes. Talanta 251, 123762. doi:10.1016/j.talanta.2022.123762
Hitabatuma, A., Wang, P. L., Su, X. O., and Ma, M. M. (2022). Metal-organic frameworks-based sensors for food safety. FOODS 11 (3), 382. doi:10.3390/foods11030382
Holliday, K. (2016). Luminescence spectroscopy, inorganic condensed matter applications. Encycl. Spectrosc. Spectrom., 627–635. doi:10.1016/b978-0-12-803224-4.00174-6
Honeychurch, K. C. (2019). Review of electroanalytical-based approaches for the determination of benzodiazepines. Biosensors 9 (4), 130. doi:10.3390/bios9040130
Hong, Y., Li, M. L., Wang, Z. H., Xu, B. Y., Zhang, Y. T., Wang, S. X., et al. (2022). Engineered optoplasmonic core-satellite microspheres for SERS determination of methamphetamine derivative and its precursors. SENSORS ACTUATORS B-CHEMICAL 358, 131437. doi:10.1016/j.snb.2022.131437
Hu, A. Q., Chen, G. Q., Yang, T. Q., Ma, C. Q., Li, L., Gao, H., et al. (2022a). A fluorescent probe based on FRET effect between carbon nanodots and gold nanoparticles for sensitive detection of thiourea. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 281, 121582. doi:10.1016/j.saa.2022.121582
Hu, J. X., Chen, C., Xie, X. B., Zhang, L. C., Song, H. J., and Lv, Y. (2023). Instant fingerprint discrimination for military explosive vapors by Dy3+Doping a La2O3-based cataluminescence sensor system. Anal. Chem. 95, 3516–3524. doi:10.1021/acs.analchem.2c05678
Hu, M., Han, Q. Y., and Xing, B. G. (2020b). Metallic nanoparticle-enabled sensing of a drug-of-abuse: an attempt at forensic application. CHEMBIOCHEM 21 (17), 2512–2517. doi:10.1002/cbic.202000157
Hu, P., Sun, Z. T., Shen, Y. W., and Pan, Y. W. (2021). A long-term stable sensor based on Fe@PCN-224 for rapid and quantitative detection of H2O2 in fishery products. FOODS 10 (2), 419. doi:10.3390/foods10020419
Hu, R., Yan, Y. B., Jiang, L., Huang, C. X., and Shen, X. T. (2022b). Determination of total cathinones with a single molecularly imprinted fluorescent sensor assisted by electromembrane microextraction. Microchim. ACTA 189 (9), 324. doi:10.1007/s00604-022-05405-3
Hu, S. J., Cao, Z. Y., Zhou, L., Ma, R. L., and Su, B. (2020a). Electrochemiluminescence imaging of latent fingerprints by electropolymerized luminol. J. Electroanal. Chem. 870, 114238. doi:10.1016/j.jelechem.2020.114238
Hua, Z., Yu, T., Liu, D. H., and Xianyu, Y. L. (2021). Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 179, 113076. doi:10.1016/j.bios.2021.113076
Huang, C., Wang, J. Y., Lin, J. R. L., Huang, W., and He, Y. (2022a). Improved colorimetric detection of 2,4,6-trinitrotoluene through γ-cyclodextrin complexation. FORENSIC Chem. 30, 100444. doi:10.1016/j.forc.2022.100444
Huang, C. L., Jiang, S. P., Kou, F. X., Guo, M. T., Li, S., Yu, G. J., et al. (2022c). Development of jellyfish-like ZnO@Ag substrate for sensitive SERS detection of melamine in milk. Appl. Surf. Sci. 600, 154153. doi:10.1016/j.apsusc.2022.154153
Huang, W., Fan, D. S., Li, W. F., Meng, Y. Y., and Liu, T. C. Y. (2022b). Rapid evaluation of milk acidity and identification of milk adulteration by Raman spectroscopy combined with chemometrics analysis. Vib. Spectrosc. 123, 103440. doi:10.1016/j.vibspec.2022.103440
Huang, X., Huang, X., Xie, J., Li, X., and Huang, Z. (2020). Rapid simultaneous detection of fumonisin B1 and deoxynivalenol in grain by immunochromatographic test strip. Anal. Biochem. 606, 113878. doi:10.1016/j.ab.2020.113878
Hue-Roye, K., and Vege, S. (2008). Principles of PCR-based assays. Immunohematology 24 (2), 170–175. doi:10.21307/immunohematology-2019-294
Hung, K., Moon, R., Roese, E., Tripathi, A., Emmons, E., Wilcox, P., et al. (2022). “Enabling detection technologies for explosive threats,” in Proc. SPIE 12116, chemical, biological, radiological, nuclear, and explosives (CBRNE) sensing XXIII, 12116, 12–21.
Hygiena (2025). ATP hygiene monitoring by hygiena. Available online at: https://www.completesafetysupplies.co.uk/hygiene-monitoring-c19/atp-hygiene-monitoring-c7/hygiena-m15.
IDEMIA (2025). “Tenprint scanners for live scan fingerprint,”. Courbevoie, France: IDEMIA. Available online at: https://www.idemia.com/tenprint-scanners.
Ilhan, H., Tayyarcan, E. K., Caglayan, M. G., Boyaci, İ. H., Saglam, N., and Tamer, U. (2021). Replacement of antibodies with bacteriophages in lateral flow assay of Salmonella Enteritidis. Biosens. Bioelectron. 189, 113383. doi:10.1016/j.bios.2021.113383
Illston-Baggs, G., Deacon, P., Ivanova, J., Nichols-Drew, L., and Farrugia, K. J. (2021). A pseudo-operational trial: an investigation into the use of longwave reflected UV imaging of cyanoacrylate developed fingermarks. Forensic Sci. Int. 325, 110871. doi:10.1016/j.forsciint.2021.110871
Izham, N. Z. M., Yusoff, H. M., Asari, A. B., and Bhat, I. U. H. (2022). Potential recognition layer in electrochemical sensor: a comparative characterization of p-cyano schiff base compounds. Biointerface Res. Appl. Chem. 12 (2), 1803–1813. doi:10.33263/BRIAC122.18031813
Jalili, R., and Khataee, A. (2020). Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. FOOD Chem. Toxicol. 146, 111806. doi:10.1016/j.fct.2020.111806
Jamieson, O., Mecozzi, F., Crapnell, R. D., Battell, W., Hudson, A., Novakovic, K., et al. (2021). Approaches to the rational design of molecularly imprinted polymers developed for the selective extraction or detection of antibiotics in environmental and food samples. Phys. STATUS SOLIDI A-APPLICATIONS Mater. Sci. 218 (13). doi:10.1002/pssa.202100021
Jang, S., Son, S. U., Kang, B., Kim, J., Lim, J., Seo, S., et al. (2022). Electrospun nanofibrous membrane-based colorimetric device for rapid and simple screening of amphetamine-type stimulants in drinks. Anal. Chem. 94 (8), 3535–3542. doi:10.1021/acs.analchem.1c04512
Jenie, S. N. A., Krismastuti, F. S. H., Ningrum, Y. P., Kristiani, A., Yuniati, M. D., Astuti, W., et al. (2020). Geothermal silica-based fluorescent nanoparticles for the visualization of latent fingerprints. Mater. EXPRESS 10 (2), 258–266. doi:10.1166/mex.2020.1551
Jeong, H. J., Dong, J., Yeom, C. H., and Ueda, H. (2020). Synthesis of quenchbodies for one-pot detection of stimulant drug methamphetamine. Methods Protoc. 3 (2), 43. doi:10.3390/mps3020043
Jiang, Q. Y., Li, D., Liu, Y. H., Mao, Z. S., Yu, Y. J., Zhu, P., et al. (2021a). Recyclable and green AuBPs@MoS2@tinfoil box for high throughput SERS tracking of diquat in complex compounds. SENSORS ACTUATORS B-CHEMICAL 344, 130290. doi:10.1016/j.snb.2021.130290
Jiang, X., Wu, F. S., Huang, X. Y., He, S., Han, Q. Y., Zhang, Z. H., et al. (2023). Fabrication of a molecularly-imprinted-polymer-based graphene oxide nanocomposite for electrochemical sensing of new psychoactive substances. NANOMATERIALS 13 (4), 751. doi:10.3390/nano13040751
Jiang, Y. X., Cong, S., Song, G., Sun, H. Z., Zhang, W., Yao, W. R., et al. (2021b). Defective cuprous oxide as a selective surface-enhanced Raman scattering sensor of dye adulteration in Chinese herbal medicines. J. RAMAN Spectrosc. 52 (7), 1265–1274. doi:10.1002/jrs.6127
Jin, Z., Zheng, W. W., Liu, Y. M., Xu, Z., and Zhao, Y. (2023). Facile preparation of electroactive Au@Ru cups for sensitive detection of bisphenol A. ACS Sustain Chem. Eng. 11 (20), 7673–7682. doi:10.1021/acssuschemeng.2c07570
Jindal, G., and Kaur, N. (2023). Barbituric acid appended fluorescent sensor for the detection of Cu2+/Hg2+ions along with real-life utility in recognition of malathionin food samples and fingerprint imaging. J. Photochem. Photobiol. A-CHEMISTRY. 434, 114238. doi:10.1016/j.jphotochem.2022.114238
Jing, M. Y., Zhang, H., Li, M., Mao, Z., and Shi, X. M. (2021). Silver nanoparticle-decorated TiO2 nanotube array for solid-phase microextraction and SERS detection of antibiotic residue in milk. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 255, 119652. doi:10.1016/j.saa.2021.119652
Joao, A. F., Rocha, R. G., Matias, T. A., Richter, E. M., Petruci, J. F. S., and Muñoz, R. A. A. (2021). 3D-printing in forensic electrochemistry: atropine determination in beverages using an additively manufactured graphene-polylactic acid electrode. Microchem. J. 167, 106324. doi:10.1016/j.microc.2021.106324
Joosten, F., Parrilla, M., van Nuijs, A. L. N., Ozoemena, K. I., and De Wael, K. (2022). Electrochemical detection of illicit drugs in oral fluid: potential for forensic drug testing. Electrochim Acta 436, 141309. doi:10.1016/j.electacta.2022.141309
Jornet-Martinez, N., Campins-Falco, P., and Herraez-Hernandez, R. (2021). A colorimetric membrane-based sensor with improved selectivity towards amphetamine. MOLECULES 26 (21), 6713. doi:10.3390/molecules26216713
Junaid, H. M., Waseem, M. T., Khan, Z. A., Gul, H., Yu, C., Shaikh, A. J., et al. (2022). Fluorescent and colorimetric sensors for selective detection of TNT and TNP explosives in aqueous medium through fluorescence emission enhancement mechanism. J. Photochem. Photobiol. A-CHEMISTRY 428, 113865. doi:10.1016/j.jphotochem.2022.113865
Justino, C. I. L., Duarte, A. C., and Rocha-Santos, T. A. P. (2017). Recent progress in biosensors for environmental monitoring: a review. Sensors 17 (12), 2918. doi:10.3390/s17122918
Kabel, K. I., Labena, A., and Gado, W. S. (2021). Novel, low cost and fast detection sensor for biogenic H2S gas based on polyaniline/ZnO, CdO and CeO2 nanocomposites at room temperature. Egypt J. Chem. 64 (6), 0–104. doi:10.21608/ejchem.2021.60970.3308
Kadhim, M. M., Abdullaha, S. A., Taban, T. Z., Alomar, T., Almasoud, N., and Hachim, S. K. (2023). Strong reactivity and electronic sensitivity of Au-decorated BC3 nanotubes toward the phenylpropanolamine drug. Appl. Phys. A-MATERIALS Sci. and Process. 129 (3), 232. doi:10.1007/s00339-023-06431-5
Kadu, R. D., Keri, R. S., Nagaraju, D. H., and Budagumpi, S. (2023). State-of-the-art electrochemical sensors for quantitative detection of pesticides. Appl. Organomet. Chem. 37. doi:10.1002/aoc.7097
Kaewnu, K., Promsuwan, K., Phonchai, A., Thiangchanya, A., Somapa, D., Somapa, N., et al. (2021). Cost-effective foam-based colorimetric sensor for roadside testing of alcohol in undiluted saliva. CHEMOSENSORS 9 (12), 334. doi:10.3390/chemosensors9120334
Kajale, S. N., Yadav, S., Cai, Y. B., Joy, B., and Sarkar, D. (2021). 2D material based field effect transistors and nanoelectromechanical systems for sensing applications. iScience 24 (12), 103513. doi:10.1016/j.isci.2021.103513
Kamal, R., and Saif, M. (2020). Barium tungstate doped with terbium ion green nanophosphor: low temperature preparation, characterization and potential applications. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 229, 117928. doi:10.1016/j.saa.2019.117928
Kamel, S., and Khattab, T. A. (2020). Recent advances in cellulose-based biosensors for medical diagnosis. Biosens. (Basel). 10 (6), 67. doi:10.3390/bios10060067
Kang, D., Jeon, E., Kim, S., and Lee, J. (2020b). Lanthanide-doped upconversion nanomaterials: recent advances and applications. BioChip J. 14 (1), 124–135. doi:10.1007/s13206-020-4111-9
Kang, J. H., Kim, Y. T., Lee, K., Kim, H. M., Lee, K. G., Ahn, J., et al. (2020a). An electrophoretic DNA extraction device using a nanofilter for molecular diagnosis of pathogens. Nanoscale 12 (8), 5048–5054. doi:10.1039/c9nr10675h
Kanodarwala, F. K., Leśniewski, A., Olszowska-Łoś, I., Spindler, X., Pieta, I. S., Lennard, C., et al. (2021). Fingermark detection using upconverting nanoparticles and comparison with cyanoacrylate fuming. Forensic Sci. Int. 326, 110915. doi:10.1016/j.forsciint.2021.110915
Karadurmus, L., Bilge, S., Sinag, A., and Ozkan, S. A. (2022). Molecularly imprinted polymer (MIP)-Based sensing for detection of explosives: current perspectives and future applications. TRAC-TRENDS Anal. Chem. 155, 116694. doi:10.1016/j.trac.2022.116694
Karimi-Maleh, H., Karimi, F., Alizadeh, M., and Sanati, A. L. (2020). Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec. 20 (7), 682–692. doi:10.1002/tcr.201900092
Karuppaiah, B., Jeyaraman, A., Chen, S. M., Chavan, P. R., Karthik, R., Shim, J. J., et al. (2023). Design and synthesis of nickel-doped cobalt molybdate microrods: an effective electrocatalyst for the determination of antibiotic drug ronidazole. Environ. Res. 222, 115343. doi:10.1016/j.envres.2023.115343
Kasry, A., Nicol, A., and Knoll, W. (2021). Grating-coupled surface-plasmon fluorescence DNA sensor. Appl. Phys. B 127 (5), 68–12. doi:10.1007/s00340-021-07619-4
Kathiravan, A., Gowri, A., Srinivasan, V., Smith, T. A., Ashokkumar, M., and Jhonsi, M. A. (2020). A simple and ubiquitous device for picric acid detection in latent fingerprints using carbon dots. ANALYST. 145 (13), 4532–4539. doi:10.1039/d0an00750a
Kazakevich, Y. V., and Lobrutto, R. (2007). HPLC for pharmaceutical scientists. John Wiley and Sons.
Ke, X., Fan, Y., Zhou, J., and Huang, Z. (2020). A novel coumarin-derived dithioacetal chemosensor for trace detection of Hg2+ in real water samples. J. Chem. Res. 44 (3–4), 142–147. doi:10.1177/1747519819890561
Khajouei, S., Ravan, H., and Ebrahimi, A. (2020). Developing a colorimetric nucleic acid-responsive DNA hydrogel using DNA proximity circuit and catalytic hairpin assembly. Anal. Chim. Acta. 1137, 1–10. doi:10.1016/j.aca.2020.08.059
Khan, S., Hazra, A., Dutta, B., Akhtaruzzaman, Md., Raihan, M. J., Banerjee, P., et al. (2021). Strategic design of anthracene-decorated highly luminescent coordination polymers for selective and rapid detection of TNP: an explosive nitro derivative and mutagenic pollutant. Cryst. Growth Des. 21 (6), 3344–3354. doi:10.1021/acs.cgd.1c00145
Khayal, A., Dawane, V., Amin, M. A., Tirth, V., Yadav, V. K., Algahtani, A., et al. (2021). Advances in the methods for the synthesis of carbon dots and their emerging applications. Polym. (Basel) 13 (18), 3190. doi:10.3390/polym13183190
Khinevich, N., Bandarenka, H., Zavatski, S., Girel, K., Tamuleviciene, A., Tamulevicius, T., et al. (2021). Porous silicon-A versatile platform for mass-production of ultrasensitive SERS-active substrates. MICROPOROUS MESOPOROUS Mater. 323, 111204. doi:10.1016/j.micromeso.2021.111204
Khorablou, Z., Shahdost-Fard, F., and Razmi, H. (2022). Voltammetric determination of pethidine in biofluids at a carbon cloth electrode modified by carbon selenide nanofilm. Talanta 239, 123131. doi:10.1016/j.talanta.2021.123131
Khorablou, Z., Shahdost-fard, F., Razmi, H., Yola, M. L., and Karimi-Maleh, H. (2021). Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: a review. Chemosphere 278, 130393. doi:10.1016/j.chemosphere.2021.130393
Khunoana, S., Parani, S., Oluwafemi, O. S., Ndinteh, D. T., and Pillay, K. (2020). Synthesis of gold nanoparticles using Crinum macowanii bulb extracts and the application of these materials in blood detections at crime scenes. LUMINESCENCE 35 (2), 187–195. doi:10.1002/bio.3710
Kim, G., Lee, J., Jeong, S., and Kim, M. (2022). Development of a CsI(Tl) scintillator based gamma probe for the identification of nuclear materials in unknown areas. J. Instrum. 17 (03), P03005. doi:10.1088/1748-0221/17/03/p03005
Kim, J. (2017). “Multifunctional smart biopolymer composites as actuators,” in Biopolymer composites in electronics (Elsevier Inc.), 311–331.
Kim, J., Park, H., Kim, J., Seo, B., and Kim, J. H. (2020). SAW chemical array device coated with polymeric sensing materials for the detection of nerve agents. Sensors 20 (24), 7028. doi:10.3390/s20247028
Kim, T. H. (2021). Toward emerging innovations in electrochemical biosensing technology. Appl. Sci. 11 (6), 2461. doi:10.3390/app11062461
King, A., Singh, R., Anand, R., Behera, S. K., and Nayak, B. B. (2021). Phase and luminescence behaviour of Ce-doped zirconia nanopowders for latent fingerprint visualisation. Opt. (Stuttg) 242, 167087. doi:10.1016/j.ijleo.2021.167087
Kishbaugh, J. M., Cielski, S., Fotusky, A., Lighthart, S., Maguire, K., Quarino, L., et al. (2019). Detection of prostate specific antigen and salivary amylase in vaginal swabs using SERATEC® immunochromatographic assays. Forensic Sci. Int. 304, 109899. doi:10.1016/j.forsciint.2019.109899
Klimuntowski, M., Alam, M. M., Singh, G., and Howlader, M. M. R. (2020). Electrochemical sensing of cannabinoids in biofluids: a noninvasive tool for drug detection. ACS Sens. 5 (3), 620–636. doi:10.1021/acssensors.9b02390
Kolacz, A. M., Wisnik-Sawka, M., Maziejuk, M., Natora, M., Harmata, W., Rytel, P., et al. (2023). Air pollution and radiation monitoring in collective protection facilities. SENSORS 23 (2), 706. doi:10.3390/s23020706
Kongkaew, S., Tubtimtong, S., Thavarungkul, P., Kanatharana, P., Chang, K. H., Abdullah, A. F. L., et al. (2022). A fabrication of multichannel graphite electrode using low-cost stencil-printing technique. Sensors 22 (8), 3034. doi:10.3390/s22083034
Köse, K., Kehribar, D. Y., and Uzun, L. (2021). Molecularly imprinted polymers in toxicology: a literature survey for the last 5 years. Environ. Sci. Pollut. Res. 28 (27), 35437–35471. doi:10.1007/s11356-021-14510-4
Koshy, K., Fowler, A. J., Gundogan, B., and Agha, R. A. (2018). Peer review in scholarly publishing part A: why do it? Int. J. Surg. Oncol. (N Y) 3 (2), 56. doi:10.1097/ij9.0000000000000056
Kranenburg, R. F., Ou, F., Sevo, P., Petruzzella, M., de Ridder, R., van Klinken, A., et al. (2022b). On-site illicit-drug detection with an integrated near-infrared spectral sensor: a proof of concept. Talanta 245, 123441. doi:10.1016/j.talanta.2022.123441
Kranenburg, R. F., Ramaker, H. J., and van Asten, A. C. (2022a). Portable near infrared spectroscopy for the isomeric differentiation of new psychoactive substances. Forensic Sci. Int. (Online) 341, 111467. doi:10.1016/j.forsciint.2022.111467
Kranenburg, R. F., Ramaker, H. J., Weesepoel, Y., Arisz, P. W. F., Keizers, P. H. J., van Esch, A., et al. (2023). The influence of water of crystallization in NIR-based MDMA•HCl detection. FORENSIC Chem. 32, 100464. doi:10.1016/j.forc.2022.100464
Kranenburg, R. F., Weesepoel, Y., Alewijn, M., Sap, S., Arisz, P. W. F., van Esch, A., et al. (2022c). The importance of wavelength selection in on-scene identification of drugs of abuse with portable near-infrared spectroscopy. FORENSIC Chem. 30, 100437. doi:10.1016/j.forc.2022.100437
Krishna, S., and Ahuja, P. (2023). A chronological study of gunshot residue (GSR) detection techniques: a narrative review. Egypt J. Forensic Sci. 13 (1), 51–21. doi:10.1186/s41935-023-00369-8
Kulkarni, M. B., Ayachit, N. H., and Aminabhavi, T. M. (2022). Biosensors and microfluidic biosensors: from fabrication to application. BIOSENSORS-BASEL. 12 (7), 543. doi:10.3390/bios12070543
Kumar, B. R., Jyothi, V., Suresh, V., and Srikanth, S. S. S. (2020a). Microcantilever sensor design - explosive detection through volatile organic compounds in humidity conditions. Biosci. Biotechnol. Res. Commun. 13 (2), 80–84. doi:10.1293/bio.13.80
Kumar, N., Udayabhanu, M. K. M., and Nagaraju, G. (2020c). Development and detection of level II and III features of latent fingerprints using highly sensitive AIE based coumarin fluorescent derivative. J. SCIENCE-ADVANCED Mater. DEVICES 5 (4), 520–526. doi:10.1016/j.jsamd.2020.09.004
Kumar, S., and Singh, P. (2023). Visualization and dermatoglyphics of latent fingerprints (sweat pores): security ink for anticounterfeiting labels and case studies. J. Photochem Photobiol. A Chem. 437, 114418. doi:10.1016/j.jphotochem.2022.114418
Kumar, V. (2021a). Chromo-fluorogenic sensors for chemical warfare agents in real-time analysis: journey towards accurate detection and differentiation. Chem. Commun. 57 (28), 3430–3444. doi:10.1039/d1cc00132a
Kumar, V. (2021b). Design and development of a prototype for specific naked-eye detection of blister and nerve agents. Anal. METHODS 13 (19), 2248–2255. doi:10.1039/d1ay00449b
Kumar, V., Saini, S. K., Choudhury, N., Kumar, A., Maiti, B., De, P., et al. (2021). Highly sensitive detection of nitro compounds using a fluorescent copolymer-based FRET system. ACS Appl. Polym. Mater 3 (8), 4017–4026. doi:10.1021/acsapm.1c00540
Kumar, V., Vaid, K., Bansal, S. A., and Kim, K. H. (2020b). Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: current status and perspectives. Biosens. Bioelectron. 165, 112382. doi:10.1016/j.bios.2020.112382
Kushwaha, C. S., Singh, P., Shukla, S. K., and Chehimi, M. M. (2022). Advances in conducting polymer nanocomposite based chemical sensors: an overview. Mater. Sci. Eng. B-ADVANCED Funct. SOLID-STATE Mater. 284, 115856. doi:10.1016/j.mseb.2022.115856
Kvachakhia, L. L., Shormanov, V. K., and Banchukova, E. A. (2020). Forensic chemical study of Amlodipine. Sud. Med. Ekspert. 63 (6), 39–44. doi:10.17116/sudmed20206306139
Kweitsu, E., Armoo, S., Kan-Dapaah, K., Abavare, E., Dodoo-Arhin, D., and Yaya, A. (2021). Comparative study of phosgene gas sensing using carbon and boron nitride nanomaterials—a DFT approach. Molecules 26 (1), 120. doi:10.3390/molecules26010120
Lai, J. A., Long, Z. W., Qiu, J. B., Zhou, D. C., Wang, Q., Yang, Y., et al. (2020). Novel organic-inorganic hybrid powder SrGa12O19:Mn2+-ethyl cellulose for efficient latent fingerprint recognition via time-gated fluorescence. RSC Adv. 10 (14), 8233–8243. doi:10.1039/d0ra00138d
Lal, K., Noble, F., and Arif, K. M. (2022). Methamphetamine detection using nanoparticle-based biosensors: a comprehensive review. Sens. Biosensing Res. 38, 100538. doi:10.1016/j.sbsr.2022.100538
Lan, J., Sun, W., Chen, L., Zhou, H., Fan, Y., Diao, X., et al. (2020). Simultaneous and rapid detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations using lateral-flow immunochromatographic assay. Food Agric. Immunol. 31 (1), 165–175. doi:10.1080/09540105.2019.1708272
Latha, N., Kavyashree, D., Lavanya, D. R., Darshan, G. P., Malleshappa, J., Nijalingappa, T. B., et al. (2021). Spectroscopic investigation of ultrasound assisted sonochemical synthesis of BiOCl: Dy3+ nanophosphors for latent fingerprints visualization. Inorg. Chem. Commun. 134, 109039. doi:10.1016/j.inoche.2021.109039
Lavanya, D. R., Darshan, G. P., Malleshappa, J., Premkumar, H. B., Sharma, S. C., Prasannakumar, J. B., et al. (2022). Surface engineered La2Zr2O7:Eu3+ nanophosphors: luminescent based platform for latent fingerprints visualization and anti-counterfeiting applications. SURFACES INTERFACES 29, 101803. doi:10.1016/j.surfin.2022.101803
Lee, H., Saisahas, K. R., Soleh, A., Kunalan, A. N. H., Chang, K. H., Limbut, W., et al. (2022c). Forensic electrochemistry: electrochemical analysis of trace methamphetamine residues on household surfaces. J. Electrochem Soc. 169 (5), 056514. doi:10.1149/1945-7111/ac6c4f
Lee, P. L. T., Kanodarwala, F. K., Lennard, C., Spindler, X., Spikmans, V., Roux, C., et al. (2022b). Latent fingermark detection using functionalised silicon oxide nanoparticles: investigation into novel application procedures. Forensic Sci. Int. (Online) 335, 111275. doi:10.1016/j.forsciint.2022.111275
Lee, T., Kim, W., Park, J., and Lee, G. (2022a). Hemolysis-Inspired, highly sensitive, label-free IgM detection using erythrocyte membrane-functionalized nanomechanical resonators. MATERIALS. 15 (21), 7738. doi:10.3390/ma15217738
Lei, Y. A., Zhang, Y. H., Yuan, L., and Li, J. K. (2022). Biochar-supported Cu nanocluster as an electrochemical ultrasensitive interface for ractopamine sensing. FOOD CHEMISTRY-X 15, 100404. doi:10.1016/j.fochx.2022.100404
Li, C., Han, D. F., Liang, Z. S., Han, F. J., Fu, W. C., Wang, W., et al. (2022h). Novel electrochemical-surface plasmon resonance (EC-SPR) sensor for amphetamine-type stimulants detection based on molecularly imprinted strategy. SENSORS ACTUATORS B-CHEMICAL 369, 132258. doi:10.1016/j.snb.2022.132258
Li, C., Han, D. F., Wu, Z. F., Liang, Z. S., Han, F. J., Chen, K., et al. (2022). Polydopamine-based molecularly imprinted electrochemical sensor for the highly selective determination of ecstasy components. ANALYST. 147 (14), 3291–3297. doi:10.1039/d2an00351a
Li, D., Lv, P., Xiao-Wen, H., Jia, Z., Zheng, M., and Hai-Tao, F. (2023b). A highly efficient fluorescent sensor based on AIEgen for detection of nitrophenolic explosives. Molecules 28 (1), 181. doi:10.3390/molecules28010181
Li, D., Zhou, P. P., Hu, Y. F., Li, G. K., and Xia, L. (2022f). Rapid determination of illegally added Sudan I in cake by triphenylamine functionalized polyhedral oligomeric silsesquioxane fluorescence sensor. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 282, 121673. doi:10.1016/j.saa.2022.121673
Li, G. L., Zhang, X. L., Zheng, F. P., Liu, J. H., and Wu, D. (2020e). Emerging nanosensing technologies for the detection of β-agonists. Food Chem. 332, 127431. doi:10.1016/j.foodchem.2020.127431
Li, H. D., Jia, R. L., and Wang, Y. (2020c). p-Pyridine BODIPY-based fluorescence probe for highly sensitive and selective detection of picric acid. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 228, 117793. doi:10.1016/j.saa.2019.117793
Li, H. D., Zhang, C. Y., Wang, J., Chong, H., Zhang, T., and Wang, C. Y. (2021a). Pristine graphic carbon nitride quantum dots for the visualized detection of latent fingerprints. Anal. Sci. 37 (11), 1497–1503. doi:10.2116/analsci.20p336
Li, H. F., Chen, J., Huang, B. W., Kong, L. W., Sun, F. F., Li, L., et al. (2022e). A rapid fluorescence sensor for the direct quantification of rongalite in foodstuffs. FOODS 11 (17), 2650. doi:10.3390/foods11172650
Li, J. X., Chen, X. Q., and Zhu, J. J. (2023a). DNA functionalized plasmonic nanoassemblies as SERS sensors for environmental analysis. AGGREGATE 4 (2). doi:10.1002/agt2.271
Li, L., Li, Q., Chu, J. G., Xi, P., Wang, C. H., Liu, R., et al. (2022a). Dual-mode luminescent multilayer core-shell UCNPs@SiO2@TEuTbB nanospheres for high-level anti-counterfeiting and recognition of latent fingerprints. Appl. Surf. Sci. 581, 152395. doi:10.1016/j.apsusc.2021.152395
Li, L., Zhang, M., and Chen, W. (2020f). Gold nanoparticle-based colorimetric and electrochemical sensors for the detection of illegal food additives. J. Food Drug Anal. 28 (4), 642–654. doi:10.38212/2224-6614.3114
Li, L., Zhang, M. M., Li, R., Jiang, H., and Liu, Z. D. (2021c). Facile synthesis of highly luminescent rod-like terbium-based metal-organic frameworks for sensitive detection of olaquindox. Anal. METHODS 13 (34), 3785–3791. doi:10.1039/d1ay00824b
Li, R., Meng, C., Wen, Y., Fu, W., and He, P. (2019a). Fluorometric lateral flow immunoassay for simultaneous determination of three mycotoxins (aflatoxin B1, zearalenone and deoxynivalenol) using quantum dot microbeads. Microchim. Acta 186 (12), 748–749. doi:10.1007/s00604-019-3879-6
Li, S. P., Zhou, J. Y., Noroozifar, M., and Kerman, K. (2021e). Gold-Platinum core-shell nanoparticles with thiolated polyaniline and multi-walled carbon nanotubes for the simultaneous voltammetric determination of six drug molecules. CHEMOSENSORS 9 (2), 24. doi:10.3390/chemosensors9020024
Li, W., Li, X. Z., Yang, T. Y., Guo, X. J., and Song, Y. T. (2020). Detection of saliva morphine using surface-enhanced Raman spectroscopy combined with immunochromatographic assay. J. RAMAN Spectrosc. 51 (4), 642–648. doi:10.1002/jrs.5822
Li, W., Luo, Y., Yue, X. Q., Wu, J. R., Wu, R. N., Qiao, Y., et al. (2020h). A novel microfluidic paper-based analytical device based on chemiluminescence for the determination of β-agonists in swine hair. Anal. METHODS 12 (18), 2317–2322. doi:10.1039/c9ay02754h
Li, W., Sun, Y. Y., Chen, W. L., Song, G. F., Huang, M. Y., Xu, J., et al. (2022g). Hollow RuCu bimetallic nanospheres as emerging SERS substrates for illegal food additives detection. Mater Lett. 327, 133053. doi:10.1016/j.matlet.2022.133053
Li, X., Jiao, X. Y., Li, H., and Derakhshandeh, M. (2021d). Amphetamine drug detection with inorganic MgO nanotube based on the DFT calculations. Appl. Biochem. Biotechnol. 193 (11), 3528–3539. doi:10.1007/s12010-021-03633-6
Li, X., Wu, X., Wang, J., Hua, Q., Wu, J., Shen, X., et al. (2019b). Three lateral flow immunochromatographic assays based on different nanoparticle probes for on-site detection of tylosin and tilmicosin in milk and pork. Sens. Actuators B Chem. 301, 127059. doi:10.1016/j.snb.2019.127059
Li, X. L., Ma, C. Q., Li, L., Gao, H., Gu, J., Zhu, C., et al. (2021b). A lanthanide complex fluorescent probe for the detection of melamine. Appl. Spectrosc. 75 (10), 1312–1319. doi:10.1177/00037028211022375
Li, X. M., Li, J. Y., Ling, J., Wang, C. D., Ding, Y. J., Chang, Y. F., et al. (2020a). A smartphone-based bacteria sensor for rapid and portable identification of forensic saliva sample. SENSORS ACTUATORS B-CHEMICAL 320, 128303. doi:10.1016/j.snb.2020.128303
Li, X. Y., Sun, L., Xu, B., Dai, L. H., Xiao, Y., Ding, Y. M., et al. (2023c). MOF-gold core-satellite nanostructure based SERS platform for fentanyl detection in multiple complex samples. SENSORS ACTUATORS B-CHEMICAL 385, 133710. doi:10.1016/j.snb.2023.133710
Li, Y., Xu, X., Liu, L., Kuang, H., Xu, L., and Xu, C. (2020d). A gold nanoparticle-based lateral flow immunosensor for ultrasensitive detection of tetrodotoxin. Analyst 145 (6), 2143–2151. doi:10.1039/d0an00170h
Li, Y. G., Liu, X. S., Zhang, G. N., Wang, R. H., Yue, R. M., Liao, G. F., et al. (2022b). Rapid and selective on-site detection of triacetone triperoxide based on visual colorimetric method. J. Chem. Res. 46 (4). doi:10.1177/17475198221117409
Li, Y. J. (2020). Calorimetric sensor for ethanol using Ni2+-nitrilotriacetic acid (NTA) resin immobilized alcohol dehydrogenase (ADH). Curr. Anal. Chem. 16 (6), 795–799. doi:10.2174/1573411015666190617110233
Li, Y. N., Liu, X. X., Hou, Y. Y., Wu, Q., and Hou, J. J. (2022d). A higher affinity melamine binding aptamer mutant for more sensitive detection. ChemistrySelect 7 (30). doi:10.1002/slct.202201427
Li, Y. S., Zhou, W. Y., Zu, B. Y., and Dou, X. C. (2020b). Qualitative detection toward military and improvised explosive vapors by a facile TiO2 nanosheet-based chemiresistive sensor array. Front. Chem. 8, 29. doi:10.3389/fchem.2020.00029
Li, Y. T., Yang, Y. Y., Sun, Y. X., Cao, Y., Huang, Y. S., and Han, S. (2020g). Electrochemical fabrication of reduced MoS 2-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline. Mikrochim. Acta 187 (4), 203. doi:10.1007/s00604-020-4201-3
Li, Y. Y., and Peng, D. (2022). Hydrophobic-binding-Driven and fluoresence-free development of aged fingerprints based on zinc oxide nanoparticles. ChemistrySelect 7 (35). doi:10.1002/slct.202202252
Li, Z., Xie, H., Fu, T., Li, Y., Shen, X., Li, X., et al. (2022c). Complementary strategy enhancing broad-specificity for multiplexed immunoassay of adulterant sulfonylureas in functional food. Biosens. (Basel). 12 (8), 591. doi:10.3390/bios12080591
Lian, J., Meng, F. D., Wang, W., and Zhang, Z. T. (2020b). Recent trends in fluorescent organic materials for latent fingerprint imaging. Front. Chem. 8, 594864. doi:10.3389/fchem.2020.594864
Lian, J., Xu, Q., Wang, Y. P., and Meng, F. D. (2020a). Recent developments in fluorescent materials for heavy metal ions analysis from the perspective of forensic chemistry. Front. Chem. 8, 593291. doi:10.3389/fchem.2020.593291
Liang, H. Z., Liu, Y. Q., Qileng, A., Shen, H. R., Liu, W. P., Xu, Z. L., et al. (2023). PEI-coated Prussian blue nanocubes as pH-Switchable nanozyme: broad-pH-responsive immunoassay for illegal additive. Biosens. Bioelectron. 219, 114797. doi:10.1016/j.bios.2022.114797
Liang, M., Ren, Y., Zhou, Z., Li, C., Wang, C., and Fu, S. (2020). Monodisperse silica nanoparticle suspension for developing latent blood fingermarks. Forensic Sci. Res. 5 (1), 38–46. doi:10.1080/20961790.2018.1446721
Liao, L. C., Xing, Y., Xiong, X. L., Gan, L., Hu, L., Zhao, F., et al. (2020). An electrochemical biosensor for hypoxanthine detection in vitreous humor: a potential tool for estimating the post-mortem interval in forensic cases. Microchem. J. 155, 104760. doi:10.1016/j.microc.2020.104760
Liao, X. F., Chen, C. J., Shi, P. P., and Yue, L. Z. (2021). Determination of melamine in milk based on β-cyclodextrin modified carbon nanoparticles via host-guest recognition. Food Chem. 338, 127769. doi:10.1016/j.foodchem.2020.127769
Liberatore, N., Viola, R., Mengali, S., Masini, L., Zardi, F., Elmi, I., et al. (2023). Compact GC-QEPAS for on-site analysis of chemical threats. SENSORS 23 (1), 270. doi:10.3390/s23010270
Lima, C. D., Couto, R. A. S., Arantes, L. C., Marinho, P. A., Pimentel, D. M., Quinaz, M. B., et al. (2020). Electrochemical detection of the synthetic cathinone 3,4-methylenedioxypyrovalerone using carbon screen-printed electrodes: a fast, simple and sensitive screening method for forensic samples. Electrochim Acta 354, 136728. doi:10.1016/j.electacta.2020.136728
Lin, C. H., Dhenadhayalan, N., and Lin, K. C. (2022). Emergent carbonized polymer dots as versatile featured nanomaterial for latent fingerprints, colorimetric sensor, and photocatalysis applications. Mater Today Nano 20, 100246. doi:10.1016/j.mtnano.2022.100246
Lin, H., Cheng, X., Yin, M. J., Bao, Z. Z., Wei, X. B., and Gu, B. B. (2020). Flexible porphyrin doped polymer optical fibers for rapid and remote detection of trace DNT vapor. ANALYST. 145 (15), 5307–5313. doi:10.1039/d0an00706d
Lin, H. Y., Chen, W. R., Lu, L. C., Chen, H. L., Chen, Y. H., Pan, M., et al. (2023b). Direct thermal growth of gold nanopearls on 3D interweaved hydrophobic fibers as ultrasensitive portable SERS substrates for clinical applications. SMALL 19 (28), e2207404. doi:10.1002/smll.202207404
Lin, Y., Chen, X. S., Li, Y. Y., Ye, Y., Yang, L., Liao, L. C., et al. (2023a). Scandium-mediated photosensitization oxidation: a new strategy for fast and neutral pH colorimetric detection of cocaine by coupling split aptamer. SENSORS ACTUATORS B-CHEMICAL 380, 133349. doi:10.1016/j.snb.2023.133349
Lin, Y., Sun, J. F., Tang, M., Zhang, G. H., Yu, L., Zhao, X. B., et al. (2021). Synergistic recognition-triggered charge transfer enables rapid visual colorimetric detection of fentanyl. Anal. Chem. 93 (16), 6544–6550. doi:10.1021/acs.analchem.1c00723
Ling, J., Zhang, W. Q., Cheng, Z. J., and Ding, Y. J. (2022). High-sensitivity detection for cantharidin by ratiometric fluorescent sensor based on molecularly imprinted nanoparticles of quantum dots. J. INDUSTRIAL Eng. Chem. 112, 358–365. doi:10.1016/j.jiec.2022.05.033
Liu, B., Zheng, S. Y., Li, H. T., Xu, J. J., Tang, H. Y., Wang, Y., et al. (2022d). Ultrasensitive and facile detection of multiple trace antibiotics with magnetic nanoparticles and core-shell nanostar SERS nanotags. Talanta 237, 122955. doi:10.1016/j.talanta.2021.122955
Liu, H. Y., You, Y. H., Zhu, Y. Z., and Zheng, H. (2021). Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. Anal. METHODS 13 (43), 5103–5119. doi:10.1039/d1ay01275d
Liu, J. J., and Niu, X. H. (2022). Rational design of nanozymes enables advanced biochemical sensing. CHEMOSENSORS 10 (10), 386. doi:10.3390/chemosensors10100386
Liu, L., Chen, H. Y., Tian, L., Sun, X. Y., and Zhang, M. Q. (2023b). Physical visualization and squalene-based scanning electrochemical microscopy imaging of latent fingerprints on PVDF membrane. ANALYST 148 (5), 1032–1040. doi:10.1039/d2an01940j
Liu, M. M., Ma, B. A., Wang, Y. P., Chen, E. J., Li, J. L., and Zhang, M. Z. (2022e). Research on rapid detection technology for β2-agonists: multi-residue fluorescence immunochromatography based on dimeric artificial antigen. FOODS 11 (6), 863. doi:10.3390/foods11060863
Liu, S., Gao, C., Tong, Z. Y., Mu, X. H., Liu, B., Xu, J. J., et al. (2022c). A highly sensitive electrochemiluminescence method for abrin detection by a portable biosensor based on a screen-printed electrode with a phage display affibody as specific labeled probe. Anal. Bioanal. Chem. 414 (2), 1095–1104. doi:10.1007/s00216-021-03735-4
Liu, W., Song, Z., Zhao, Y., Liu, Y., He, X., Methods, S. C. A., et al. (2020a). Flexible porous aerogels decorated with Ag nanoparticles as an effective SERS substrate for label-free trace explosives detection. Anal. Methods 12, 4123–4129. doi:10.1039/d0ay00771d
Liu, W., Wang, X., Zhao, Z. Y., Zhou, X., Huang, S. L., Huang, L. J., et al. (2022b). Tailored SiO2-TiO2 aerogel/Ag flexible films as stable SERS substrates for hazardous materials detection. Adv. Mater Technol. 7 (6). doi:10.1002/admt.202101169
Liu, X., Choi, E. G., Cui, S., Kumar, K., Cho, M., and Chang, Y. T. (2022a). Casting red light for bad oil by dual turning-on mechanisms of fluorescence and its application in the portable platform. SENSORS ACTUATORS B-CHEMICAL 365, 131866. doi:10.1016/j.snb.2022.131866
Liu, X. F., Deng, J. X., Li, J. W., Dong, J. B., Liu, H., Zhao, J. S., et al. (2023a). B-doped graphene quantum dots array as fluorescent sensor platforms for plasticizers detection. SENSORS ACTUATORS B-CHEMICAL 376, 132989. doi:10.1016/j.snb.2022.132989
Liu, Y. J., and Zhang, L. Y. (2020). The development of latent fingermarks for visualization by using aunps@auncs core/shell nanoparticles. Nano 15 (10), 2050132. doi:10.1142/s1793292020501325
Liu, Y. Z., Yu, H. X., Alkhamis, O., Moliver, J., and Xiao, Y. (2020b). Tuning biosensor cross-reactivity using aptamer mixtures. Anal. Chem. 92 (7), 5041–5047. doi:10.1021/acs.analchem.9b05339
Liyanage, T., Masterson, A. N., Hati, S., Ren, G., Manicke, N. E., Rusyniak, D. E., et al. (2020). Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients’ plasma. ANALYST 145 (23), 7662–7672. doi:10.1039/d0an01372b
Loch, A. S., Burn, P. L., and Shaw, P. E. (2023). Fluorescent sensors for the detection of free-base illicit drugs-Effect of tuning the electronic properties. SENSORS ACTUATORS B-CHEMICAL 387, 133766. doi:10.1016/j.snb.2023.133766
Long, D. A. (1977). Raman spectroscopy. New York: McGraw-Hill. Available online at: https://books.google.com/books?hl=en&lr=&id=DzUXBQAAQBAJ&oi=fnd&pg=PA149&dq=raman+spectroscopy&ots=oZhyDeeWaR&sig=SMiumhxoCedGa4WwpgeqMMLjfHw.
Loredana, M., Alina, A., Dragomir, I. S., Bucataru, I. C., Jonggwan, P., Ho, S. C., et al. (2020). Sequence-specific detection of single-stranded DNA with a gold nanoparticle-protein nanopore approach. Sci. Rep. Nat. Publ. Group. 10 (1), 11323. doi:10.1038/s41598-020-68258-x
Lu, L. X., Xu, L. X., Zhang, Y. L., and Jiang, T. (2022). Multiplexed surface-enhanced Raman scattering detection of melamine and dicyandiamide in dairy food enabled by three-dimensional polystyrene@silver@graphene oxide hybrid substrate. Appl. Surf. Sci. 603, 154419. doi:10.1016/j.apsusc.2022.154419
Lu, R. Q., Qi, Z. K., Wang, S. Y., Tian, X. G., and Xu, X. Y. (2021). Rapid detection of illegal biguanides in hypoglycemic health products using molecular imprinting combined with SERS technology. Microchem. J. 169, 106523. doi:10.1016/j.microc.2021.106523
Luo, H. Z., Liu, S., Shi, L. N., Li, Z., Bai, Q. W., Du, X. X., et al. (2022). Paper-based fluidic sensing platforms for β-adrenergic agonist residue point-of-care testing. BIOSENSORS-BASEL. 12 (7), 518. doi:10.3390/bios12070518
Ma, B., Wang, X. F., Gao, S., Qi, L. H., Xu, Y., Yang, J. X., et al. (2020). Iridium(Ⅲ) complex-based phosphorescent probe for rapid, specific, and sensitive detection of phosgene. DYES PIGMENTS. 177, 108279. doi:10.1016/j.dyepig.2020.108279
Maashi, M. S. (2023). CRISPR/Cas-based aptasensor as an innovative sensing approaches for food safety analysis: recent progresses and new horizons. Crit. Rev. Anal. Chem. 54, 2599–2617. doi:10.1080/10408347.2023.2188955
Machado, T. R., da Silva, J. S., Miranda, R. R., Zucolotto, V., Li, M. S., de Yuso, M. V. M., et al. (2022). Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence. Chem. Eng. J. 443, 136443. doi:10.1016/j.cej.2022.136443
Madani-Nejad, E., Shokrollahi, A., and Shahdost-Fard, F. (2023). A smartphone-based colorimetric assay using Au@Ag core-shell nanoparticles as the nanoprobes for visual tracing of fluvoxamine in biofluids as a common suicide drug. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc., 296. doi:10.1016/j.saa.2023.122665
Mahmudiono, T., Bokov, D. O., Jasim, S. A., Abdelbasset, W. K., and Khashirbaeva, D. M. (2022). State-of-the-art of convenient and low-cost electrochemical sensor for food contamination detection: technical and analytical overview. Microchem. J. 179, 107460. doi:10.1016/j.microc.2022.107460
Malahom, N., Jarujamrus, P., Anutrasakda, W., Chawengkirttikul, R., Siripinyanond, A., Meelapsom, R., et al. (2020). Novel paper-based colorimetric immunoassay (PCI) for sensitive and specific detection of salbutamol residues in flesh of swine and urine using Ag3PO4/Ag nanocomposite as label. J. Food Sci. 85 (1), 209–219. doi:10.1111/1750-3841.14974
Malik, A. H., Zehra, N., Ahmad, M., Parui, R., and Iyer, P. K. (2020). Advances in conjugated polymers for visualization of latent fingerprints: a critical perspective. NEW J. Chem. 44 (45), 19423–19439. doi:10.1039/d0nj04131a
Mandal, P., and Tewari, B. S. (2022). Progress in surface enhanced Raman scattering molecular sensing: a review. SURFACES INTERFACES 28, 101655. doi:10.1016/j.surfin.2021.101655
Mani, V., Beduk, T., Khushaim, W., Ceylan, A. E., Timur, S., Wolfbeis, O. S., et al. (2021). Electrochemical sensors targeting salivary biomarkers: a comprehensive review. TrAC Trends Anal. Chem. 135, 116164. doi:10.1016/j.trac.2020.116164
Mansouri, M., Khalilzadeh, B., Barzegari, A., Shoeibi, S., Isildak, S., Bargahi, N., et al. (2020). Design a highly specific sequence for electrochemical evaluation of meat adulteration in cooked sausages. Biosens. Bioelectron. 150, 111916. doi:10.1016/j.bios.2019.111916
Mao, G., Liu, C., Yang, N., Yang, L., and He, G. (2021b). Design and synthesis of a fluorescent probe based on copper complex for selective detection of hydrogen sulfide. J. Sens. 2021. doi:10.1155/2021/8822558
Mao, J. K., Kang, Y. L., Yu, D. D., and Zhou, J. G. (2021d). Surface-enhanced Raman spectroscopy integrated with aligner mediated cleavage strategy for ultrasensitive and selective detection of methamphetamine. Anal. Chim. Acta. 1146, 124–130. doi:10.1016/j.aca.2020.12.028
Mao, K., Yang, Z. G., Zhang, H., Li, X. Q., and Cooper, J. M. (2021c). Paper-based nanosensors to evaluate community-wide illicit drug use for wastewater-based epidemiology. Water Res. 189, 116559. doi:10.1016/j.watres.2020.116559
Mao, K., Zhang, H., Pan, Y. W., and Yang, Z. G. (2021a). Biosensors for wastewater-based epidemiology for monitoring public health. Water Res. 191, 116787. doi:10.1016/j.watres.2020.116787
Mao, K., Zhang, H., Pan, Y. W., Zhang, K. K., Cao, H. R., Li, X. Q., et al. (2020). Nanomaterial-based aptamer sensors for analysis of illicit drugs and evaluation of drugs consumption for wastewater-based epidemiology. TRAC-TRENDS Anal. Chem. 130, 115975. doi:10.1016/j.trac.2020.115975
Mao, S. H., Pei, F. B., Feng, S. S., Hao, Q. L., Zhang, P. J., Tong, Z. Y., et al. (2023). Detection of trace Rhodamine B using stable, uniformity, and reusable SERS substrate based on Ag@SiO2-Au nanoparticles. COLLOIDS SURFACES A-PHYSICOCHEMICAL Eng. ASPECTS 657, 130595. doi:10.1016/j.colsurfa.2022.130595
María-Hormigos, R., Molinero-Fernández, Á., López, M. Á., Jurado-Sánchez, B., and Escarpa, A. (2022). Prussian blue/chitosan micromotors with intrinsic enzyme-like activity for (bio)-Sensing assays. Anal. Chem. 94 (14), 5575–5582. doi:10.1021/acs.analchem.1c05173
Marques, L., Félix, L., Cruz, G., Coelho, V., Caetano, J., Vale, A., et al. (2023). Neutron and gamma-ray detection system coupled to a multirotor for screening of shipping container cargo. Sensors 23 (1), 329. doi:10.3390/s23010329
Masemola, D. P., Mafa, P. J., Nyoni, H., Mamba, B. B., and Msagati, T. A. M. (2020). Gold nanoparticles modified exfoliated graphite electrode as electrochemical sensor in the determination of psychoactive drug. J. Environ. Sci. HEALTH PART B-PESTICIDES FOOD Contam. Agric. WASTES 55 (5), 455–461. doi:10.1080/03601234.2020.1713670
Mayer, B. P., Kennedy, D. J., Lau, E. Y., and Valdez, C. A. (2023). Evaluation of polyanionic cyclodextrins as high affinity binding scaffolds for fentanyl. Sci. Rep. 13 (1), 2680. doi:10.1038/s41598-023-29662-1
McGoldrick, L. K., and Halámek, J. (2020). Recent advances in noninvasive biosensors for forensics, biometrics, and cybersecurity. Sensors 20 (21), 5974. doi:10.3390/s20215974
McKeever, C., Callan, S., Warren, S., and Dempsey, E. (2022). Magnetic nanoparticle modified electrodes for voltammetric determination of propellant stabiliser diphenylamine. Talanta 238, 123039. doi:10.1016/j.talanta.2021.123039
Medyantseva, E. P., Gazizullina, E. R., Brusnitsyn, D. V., Fedorenko, S. V., Mustafina, A. R., and Eremin, S. A. (2022). Determination of amitriptyline by fluorescence polarization immunoassay. J. Anal. Chem. 77 (9), 1147–1154. doi:10.1134/s1061934822070085
Mégarbane, B., Oberlin, M., Alvarez, J. C., Balen, F., Beaune, S., Bédry, R., et al. (2020). Management of pharmaceutical and recreational drug poisoning. Ann. Intensive Care 10 (1), 157–230. doi:10.1186/s13613-020-00762-9
Mei, L., Shi, Y. M., Shi, Y. E., Yan, P. P., Lin, C. L., Sun, Y., et al. (2022). Multivalent SnO2 quantum dot-decorated Ti3C2 MXene for highly sensitive electrochemical detection of Sudan I in food. ANALYST. 147 (23), 5557–5563. doi:10.1039/d2an01432g
Meir, R., Zverzhinetsky, M., Harpak, N., Borberg, E., Burstein, L., Zeiri, O., et al. (2020). Direct detection of uranyl in urine by dissociation from aptamer-modified nanosensor arrays. Anal. Chem. 92 (18), 12528–12537. doi:10.1021/acs.analchem.0c02387
Melman, Y., Wells, P. K., Katz, E., and Smutok, O. (2022). A universal nanostructured bioanalytical platform for NAD+-dependent enzymes based on the fluorescent output reading with a smartphone. Talanta 243, 123325. doi:10.1016/j.talanta.2022.123325
Mengjun, H., and Peng, D. (2021). A rapid and dual-mode visualization of latent and bloody fingermarks using Cr- and Sb-codoped titanium dioxide nanoparticles. J. Mater Sci. 56 (9), 5543–5554. doi:10.1007/s10853-020-05651-x
Merck (2025). Water, food and environmental analytics catalog. Anal. and Sample Prep. Available online at: https://www.merckmillipore.com/GB/en/20170308_183420.
Mereuta, L., Asandei, A., Dragomir, I., Park, J., Park, Y., and Luchian, T. (2022). A nanopore sensor for multiplexed detection of short polynucleotides based on length-variable, poly-arginine-conjugated peptide nucleic acids. Anal. Chem. 94 (24), 8774–8782. doi:10.1021/acs.analchem.2c01587
META (2016). “Megatrends affecting science, technology and innovation,” in OECD science, technology and innovation outlook 2016.
Methley, A. M., Campbell, S., Chew-Graham, C., McNally, R., and Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 14, 579. doi:10.1186/s12913-014-0579-0
Ministry of Justice (2023). Criminal justice system statistics quarterly: december 2022 - GOV. Available online at: https://www.gov.uk/government/statistics/criminal-justice-system-statistics-quarterly-december-2022.
Mishra, S., Rani, S., and Ray, S. J. (2020). Single electron transistor based nanosensor for DNA and RNA detection. J. Appl. Phys. 128 (19). doi:10.1063/5.0016104
Mitri, F., De Iacovo, A., De Santis, S., Sotgiu, G., and Colace, L. (2022). “Quantum dots for explosive detection in air-two complimentary approaches,” in Prime 2022 - 17th international conference on PhD research in microelectronics and electronics, proceedings, 53–56.
Mittal, S., Laishram, K., Inamdar, S., Das, N. R., and Razdan, A. K. (2020). Narcotic drug detection and identification through synchronous fluorescence technique. Def. Sci. J. 70 (5), 534–537. doi:10.14429/dsj.70.16338
Mobileidworld (2013). Cross match introduces new SEEK avenger handheld. Available online at: https://mobileidworld.com/archive/cross-match-introduces-new-seek-avenger-handheld/.
Mohamad, N. R., Buang, N. A., Mahat, N. A., Jamalis, J., Huyop, F., Aboul-Enein, H. Y., et al. (2015). Simple adsorption of Candida rugosa lipase onto multi-walled carbon nanotubes for sustainable production of the flavor ester geranyl propionate. J. Industrial Eng. Chem. 32, 99–108. doi:10.1016/j.jiec.2015.08.001
Mohan, J. M., Amreen, K., Kulkarni, M. B., Javed, A., Dubey, S. K., and Goel, S. (2021). Optimized ink jetted paper device for electroanalytical detection of picric acid. COLLOIDS SURFACES B-BIOINTERFACES 208, 112056. doi:10.1016/j.colsurfb.2021.112056
Molinara, M., Bourelly, C., Ferrigno, L., Gerevini, L., Vitelli, M., Ria, A., et al. (2022). “A new dataset for detection of illegal or suspicious spilling in wastewater through low-cost real-time sensors,” in Proceedings - 2022 IEEE international conference on smart computing (Piscataway, NJ: IEEE (Institute of Electrical and Electronics Engineers)), 293–298.
Monago-Maraña, O., Eskildsen, C. E., de la Peña, A. M., Galeano-Díaz, T., and Wold, J. P. (2020). Non-destructive fluorescence spectroscopy combined with second-order calibration as a new strategy for the analysis of the illegal Sudan I dye in paprika powder. Microchem. J. 154, 104539. doi:10.1016/j.microc.2019.104539
Montali, L., Calabretta, M. M., Lopreside, A., D’Elia, M., Guardigli, M., and Michelini, E. (2020). Multienzyme chemiluminescent foldable biosensor for on-site detection of acetylcholinesterase inhibitors. Biosens. Bioelectron. 162, 112232. doi:10.1016/j.bios.2020.112232
Moon, D., Cha, Y. K., Kim, S. O., Cho, S., Ko, H. J., and Park, T. H. (2020). FET-based nanobiosensors for the detection of smell and taste. Sci. CHINA-LIFE Sci. 63 (8), 1159–1167. doi:10.1007/s11427-019-1571-8
Moradi, R., Khalili, N. P., Septiani, N. W., Liu, C. H., Doustkhah, E., Yamauchi, Y., et al. (2022). Nanoarchitectonics for abused-drug biosensors. SMALL 18 (10), e2104847. doi:10.1002/smll.202104847
Morita, I., Kiguchi, Y., Oyama, H., Yamaki, K., Sakio, N., Kashiwabara, K., et al. (2022). Derivatization-assisted immunoassays: application for group-specific detection of potent methamphetamine and amphetamine enantiomers. Anal. METHODS 14 (28), 2745–2753. doi:10.1039/d2ay00940d
Mostafa, I. M., Meng, C. D., Dong, Z. X., Lou, B. H., and Xu, G. B. (2022). Potentiometric sensors for the determination of pharmaceutical drugs. Anal. Sci. 38 (1), 23–37. doi:10.2116/analsci.21sar02
Mousaabadi, K. Z., Ensafi, A. A., and Rezaei, B. (2022). Simultaneous determination of some opioid drugs using Cu-hemin MOF@MWCNTs as an electrochemical sensor. Chemosphere 303, 135149. doi:10.1016/j.chemosphere.2022.135149
Murahashi, M., Makinodan, M., Yui, M., Hibi, T., and Kobayashi, M. (2020). Immunochromatographic detection of human hemoglobin from deteriorated bloodstains due to methamphetamine contamination, aging, and heating. Anal. Bioanal. Chem. 412 (23), 5799–5809. doi:10.1007/s00216-020-02802-6
Musile, G., Agard, Y., Wang, L., De Palo, E. F., McCord, B., and Tagliaro, F. (2021). Paper-based microfluidic devices: on-site tools for crime scene investigation. TRAC-TRENDS Anal. Chem. 143, 116406. doi:10.1016/j.trac.2021.116406
Mustafa, F., Carhart, M., and Andreescu, S. (2021). A 3D-printed breath analyzer incorporating CeO2 nanoparticles for colorimetric enzyme-based ethanol sensing. ACS Appl. Nano Mater 4 (9), 9361–9369. doi:10.1021/acsanm.1c01826
Mutz, Y. S., do Rosario, D., Silva, L. R. G., Galvan, D., Janegitz, B. C., Ferreira, R. D., et al. (2022). A single screen-printed electrode in tandem with chemometric tools for the forensic differentiation of Brazilian beers. Sci. Rep. 12 (1), 5630. doi:10.1038/s41598-022-09632-9
Myadam, N. L., Nadargi, D. Y., Nadargi, J. D., Kudkyal, V. R., Shaikh, F. I., Mulla, I. S., et al. (2021). Ni/SnO2 xerogels via epoxide chemistry: potential candidate for H2S gas sensing application. J. Porous Mater. 28 (1), 239–248. doi:10.1007/s10934-020-00970-5
Na, G. Q., Hu, X. F., Sun, Y. N., Kwee, S., Xing, G. X., Xing, Y. R., et al. (2020). A highly sensitive monoclonal antibody-based paper sensor for simultaneously detecting valnemulin and tiamulin in porcine liver. J. Food Sci. 85 (6), 1681–1688. doi:10.1111/1750-3841.15136
Nadar, S. S., Kelkar, R. K., Pise, P. V., Patil, N. P., Patil, S. P., Chaubal-Durve, N. S., et al. (2021). The untapped potential of magnetic nanoparticles for forensic investigations: a comprehensive review. Talanta 230, 122297. doi:10.1016/j.talanta.2021.122297
Nagabooshanam, S., Sharma, S., Roy, S., Mathur, A., Krishnamurthy, S., and Bharadwaj, L. M. (2021). Development of field deployable sensor for detection of pesticide from food chain. IEEE Sens. J. 21 (4), 4129–4134. doi:10.1109/jsen.2020.3030034
Naik, V. M., Gunjal, D. B., Gore, A. H., Anbhule, P. V., Sohn, D., Bhosale, S. V., et al. (2020). Nitrogen-doped carbon dot threads as a “turn-off” fluorescent probe for permanganate ions and its hydrogel hybrid as a naked eye sensor for gold(III) ions. Anal. Bioanal. Chem. 412 (12), 2993–3003. doi:10.1007/s00216-020-02550-7
Narasimhamurthy, K. N., Darshan, G. P., Sharma, S. C., Premkumar, H. B., Adarsha, H., and Nagabhushana, H. (2021). Surface functionalized inorganic phosphor by grafting organic antenna for long term preservation of latent fingerprints and data-security applications. J. Colloid Interface Sci. 600, 887–897. doi:10.1016/j.jcis.2021.05.029
Nardo, F. Di, Chiarello, M., Cavalera, S., Baggiani, C., and Anfossi, L. (2021). Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives. Sensors 21 (15), 5185. doi:10.3390/s21155185
Naresh, V., and Lee, N. (2021). A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 21 (4), 1109. doi:10.3390/s21041109
Navami, D., Darshan, G. P., Basavaraj, R. B., Sharma, S. C., Kavyashree, D., Venkatachalaiah, K. N., et al. (2020). Shape controllable ultrasound assisted fabrication of CaZrO3:Dy3+ hierarchical structures for display, dosimetry and advanced forensic applications. J. Photochem. Photobiol. A-CHEMISTRY. 389, 112248. doi:10.1016/j.jphotochem.2019.112248
Nayini, M. M. R., Sayadian, H., Razavipour, N., and Rezazade, M. (2020). Chemical-sensing of Amphetamine drug by inorganic AlN nano-cage: a DFT/TDDFT study. Inorg. Chem. Commun. 121, 108237. doi:10.1016/j.inoche.2020.108237
NCJRS Virtual Library (2001). Scientific working group on friction ridge analysis, study and technology. J. Forensic Identif. Available online at: https://www.ojp.gov/ncjrs/virtual-library/abstracts/scientific-working-group-friction-ridge-analysis-study-and.
Neal, R. D., Hughes, R. A., Preston, A. S., Golze, S. D., Demille, T. B., and Neretina, S. (2021). Substrate-immobilized noble metal nanoplates: a review of their synthesis, assembly, and application. J. Mater Chem. C Mater 9 (38), 12974–13012. doi:10.1039/d1tc01494c
Neng, J., Wang, Y. Z., Zhang, Y. L., Chen, P., and Yang, K. (2023). MIPs-SERS sensor based on Ag NPs film for selective detection of enrofloxacin in food. BIOSENSORS-BASEL. 13 (3), 330. doi:10.3390/bios13030330
Neng, J., Zhang, Q., and Sun, P. L. (2020). Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosens. Bioelectron. 167, 112480. doi:10.1016/j.bios.2020.112480
Neurotechnology (2025). Cross match L SCAN guardian USB/FW fingerprint scanners. Available online at: https://neurotechnology.com/fingerprint-scanner-cross-match-l-scan-guardian.html.
Ngo, H. T., Nguyen, V. T., Tran, D. M., Toan, T. T. T., Triet, N. T. M., Nguyen, T. B., et al. (2020). “Voltammetric determination of rhodamine B using a ZIF-67/reduced graphene oxide modified electrode,”. Editor Y. Liu, 2020, 1–14. doi:10.1155/2020/4679061
Nguyen, Y. T., Shin, S., Kwon, K., Kim, N., and Bae, S. W. (2023). BODIPY-based fluorescent sensors for detection of explosives. J. Chem. Res. 47 (2). doi:10.1177/17475198231168961
Nie, X., Dong, K., Tian, Y., Zong, C., Chen, Z., Wang, X., et al. (2023). A green analysis detection of formaldehyde in grooming products by surface enhanced Raman spectroscopy. Mater. TODAY Sustain. 22, 100303. doi:10.1016/j.mtsust.2022.100303
NIST (2025). Fire debris and explosives. Gaithersburg, MD: National Institute of Standards and Technology (NIST). Available online at: https://www.nist.gov/programs-projects/fire-debris-and-explosives.
Noh, D., Ampadu, E. K., and Oh, E. (2022). Influence of air flow on luminescence quenching in polymer films towards explosives detection using drones. Polym. (Basel) 14 (3), 483. doi:10.3390/polym14030483
Northamptonshire Fire and Rescue Service Fire Investigation (FI) (2013). Service information system.
Novais, A. D., Arantes, L. C., Almeida, E. S., Rocha, R. G., Lima, C. D., Melo, L. M. D., et al. (2022). Fast on-site screening of 3,4-methylenedioxyethylamphetamine (MDEA) in forensic samples using carbon screen-printed electrode and square wave voltammetry. Electrochim Acta 403, 139599. doi:10.1016/j.electacta.2021.139599
Noviana, E., McCord, C. P., Clark, K. M., Jang, I., and Henry, C. S. (2019). Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab. Chip 20 (1), 9–34. doi:10.1039/c9lc00903e
NPCC (2025). Nearly 9,000 drivers caught drink or drug driving. Available online at: https://news.npcc.police.uk/releases/nearly-9-000-drivers-caught-drink-or-drug-driving-in-six-week-police-operation.
NPSA (2025). Canine detection. Available online at: https://www.npsa.gov.uk/canine-detection-0.
Nsuamani, M. L., Zolotovskaya, S., Abdolvand, A., Daeid, N. N., and Adegoke, O. (2022). Thiolated gamma-cyclodextrin-polymer-functionalized CeFe3O4 magnetic nanocomposite as an intrinsic nanocatalyst for the selective and ultrasensitive colorimetric detection of triacetone triperoxide. Chemosphere 307, 136108. doi:10.1016/j.chemosphere.2022.136108
Nugroho, D., Chanthai, S., Oh, W. C., and Benchawattananon, R. (2023). Fluorophores-rich natural powder from selected medicinal plants for detection latent fingerprints and cyanide. Sci. Prog. 106 (1), 368504231156217. doi:10.1177/00368504231156217
Nugroho, D., Keawprom, C., Chanthai, S., Oh, W. C., and Benchawattananon, R. (2022a). Highly sensitive fingerprint detection under UV light on non-porous surface using starch-powder based luminol-doped carbon dots (N-CDs) from tender coconut water as a green carbon source. NANOMATERIALS 12 (3), 400. doi:10.3390/nano12030400
Nugroho, D., Oh, W. C., Chanthai, S., and Benchawattananon, R. (2022b). Improving minutiae image of latent fingerprint detection on non-porous surface materials under UV light using sulfur doped carbon quantum dots from magnolia grandiflora flower. NANOMATERIALS 12 (19), 3277. doi:10.3390/nano12193277
Nurazzi, N. M., Harussani, M. M., Zulaikha, N. D. S., Norhana, A. H., Syakir, M. I., and Norli, A. (2021). Composites based on conductive polymer with carbon nanotubes in DMMP gas sensors - an overview. Polimery/Polymers 66 (2), 85–97. doi:10.14314/polimery.2021.2.1
Nurfarhana, H., Tahir, A., Mahat, N. A., Hasmerya, M., and Keat, H. F. (2022). Counterfeit fifty Ringgit Malaysian banknotes authentication using novel graph-based chemometrics method. Sci. Rep. Nat. Publ. Group. 12 (1), 4826. doi:10.1038/s41598-022-08821-w
Office for National Statistics (2022). Crime in england and wales: year ending march 2022 - GOV.UK. Available online at: https://www.gov.uk/government/statistics/crime-in-england-and-wales-year-ending-march-2022.
Official Statistics (2022). Drug misuse in england and wales: year ending june 2022 - GOV.UK. Available online at: https://www.gov.uk/government/statistics/drug-misuse-in-england-and-wales-year-ending-june-2022.
Official Statistics (2025). Crime outcomes in england and wales 2021 to 2022 - GOV. Available online at: https://www.gov.uk/government/statistics/crime-outcomes-in-england-and-wales-2021-to-2022/crime-outcomes-in-england-and-wales-2021-to-2022.
Olean-Oliveira, A., Trevizan, H. F., Cardoso, C. X., and Teixeira, M. F. S. (2023). Impedimetric study of the electrocatalytic oxidation of alcohols by nickel-Schiff base metallopolymer: potential application for forensic identification of alcoholic beverage contaminants by multivariate data analysis. Talanta 253, 124029. doi:10.1016/j.talanta.2022.124029
Olszowska, I., Lesniewski, A., Kelm, A., Pieta, I. S., Siejca, A., and Niedziólka-Jönsson, J. (2020). Zinc oxide quantum dots embedded in hydrophobic silica particles for latent fingermarks visualization based on time-gated luminescence measurements. Methods Appl. Fluoresc. 8 (2), 025001. doi:10.1088/2050-6120/ab6f24
Ondieki, A. M., Birech, Z., Kaduki, K. A., Mwangi, P. W., Mwenze, N. M., Juma, M., et al. (2023). Fabrication of surface-enhanced Raman spectroscopy substrates using silver nanoparticles produced by laser ablation in liquids. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 296, 122694. doi:10.1016/j.saa.2023.122694
Ong, V., Cortez, N. R., Xu, Z. R., Amirghasemi, F., Abd El-Rahman, M. K., and Mousavi, M. P. S. (2023). An accessible Yarn-based sensor for in-field detection of Succinylcholine poisoning. CHEMOSENSORS 11 (3), 175. doi:10.3390/chemosensors11030175
Ortiz-Aguayo, D., Cetó, X., De Wael, K., and del Valle, M. (2022). Resolution of opiate illicit drugs signals in the presence of some cutting agents with use of a voltammetric sensor array and machine learning strategies. SENSORS ACTUATORS B-CHEMICAL 357, 131345. doi:10.1016/j.snb.2021.131345
Ott, C. E., Cunha-Silva, H., Kuberski, S. L., Cox, J. A., Arcos-Martínez, M. J., and Arroyo-Mora, L. E. (2020). Electrochemical detection of fentanyl with screen-printed carbon electrodes using square-wave adsorptive stripping voltammetry for forensic applications. J. Electroanal. Chem. 873, 114425. doi:10.1016/j.jelechem.2020.114425
Ouyang, S. Y., Yu, S. T., and Le, Y. Y. (2022). Current advances in immunoassays for the detection of β2-agonists. FOODS 11 (6), 803. doi:10.3390/foods11060803
Özgür, E., Saylan, Y., Bereli, N., Türkmen, D., and Denizli, A. (2020). Molecularly imprinted polymer integrated plasmonic nanosensor for cocaine detection. J. BIOMATERIALS SCIENCE-POLYMER Ed. 31 (9), 1211–1222. doi:10.1080/09205063.2020.1751524
Pal, A., Kaswan, K., Barman, S. R., Lin, Y. Z., Chung, J. H., Sharma, M. K., et al. (2023). Microfluidic nanodevices for drug sensing and screening applications. Biosens. Bioelectron. 219, 114783. doi:10.1016/j.bios.2022.114783
Pan, M., Ma, T., Yang, J., Li, S., Liu, S., and Wang, S. (2020). Development of lateral flow immunochromatographic assays using colloidal Au Sphere and nanorods as signal marker for the determination of zearalenone in Cereals. Foods 9 (3), 281. doi:10.3390/foods9030281
Pan, Y. C., Liu, X., Liu, J., Wang, J. P., Liu, J. X., Gao, Y. X., et al. (2022). Chemiluminescence sensors based on molecularly imprinted polymers for the determination of organophosphorus in milk. J. Dairy Sci. 105 (4), 3019–3031. doi:10.3168/jds.2021-21213
Papadopoulos, F., Diamanteas, K., Economou, A., and Kokkinos, C. (2020). Rapid drop-volume electrochemical detection of the “date rape” drug flunitrazepam in Spirits using a screen-printed sensor in a Dry-reagent format. Sensors 20 (18), 5192. doi:10.3390/s20185192
Papaioannou, G. C., Karastogianni, S., and Girousi, S. (2022). Development of an electrochemical sensor using a modified carbon paste electrode with silver nanoparticles capped with saffron for monitoring mephedrone. SENSORS 22 (4), 1625. doi:10.3390/s22041625
Pappalardo, A., Gangemi, C. M. A., Toscano, R. M., and Sfrazzetto, G. T. (2020). A new fluorescent salen-uranyl sensor for the sub-ppm detection of chemical warfare agents. Curr. Org. Chem. 24 (20), 2378–2382. doi:10.2174/1385272824999200930150313
Paprocki, S., Qassem, M., and Kyriacou, P. A. (2022). Review of ethanol intoxication sensing technologies and techniques. SENSORS 22 (18), 6819. doi:10.3390/s22186819
Parkhey, P., and Mohan, S. V. (2018). “Biosensing applications of microbial fuel cell: approach toward miniaturization,” in Microbial electrochemical technology (Elsevier), 977–997.
Parrilla, M., Joosten, F., and De Wael, K. (2021). Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution. SENSORS ACTUATORS B-CHEMICAL 348, 130659. doi:10.1016/j.snb.2021.130659
Parrilla, M., Slosse, A., Van Echelpoel, R., Montiel, N. F., Langley, A. R., Van Durme, F., et al. (2022). Rapid on-site detection of illicit drugs in smuggled samples with a portable electrochemical device. CHEMOSENSORS 10 (3), 108. doi:10.3390/chemosensors10030108
Parungao, D., Vandenabeele, P., Edwards, H. G. M., Candeias, A., and Miguel, C. (2022). Mobile Raman spectroscopy analysis of elephant ivory objects. J. Raman Spectrosc. 54, 1297–1302. doi:10.1002/jrs.6487
Paschoarelli, M. V. V., Kavai, M. S., de Lima, L. F., and de Araujo, W. R. (2023). Laser-scribing fabrication of a disposable electrochemical device for forensic detection of crime facilitating drugs in beverage samples. Talanta 255, 124214. doi:10.1016/j.talanta.2022.124214
Patil, G., Dongre, S. D., Das, T., and Babu, S. S. (2020). Dual mode selective detection and differentiation of TNT from other nitroaromatic compounds. J. Mater Chem. A Mater 8 (21), 10767–10771. doi:10.1039/d0ta02091e
Patiti, C., Sfragano, P. S., Laschi, S., Pillozzi, S., Boddi, A., Crociani, O., et al. (2022). Chip-based and wearable tools for isothermal amplification and electrochemical analysis of nucleic acids. CHEMOSENSORS 10 (7), 278. doi:10.3390/chemosensors10070278
Pattarith, K., and Benchawattananon, R. (2020). The novel photoluminescence powder synthesized from zinc carbonate nanoparticles associated with fluorescein dye for its latent fingerprint detection. Orient. J. Chem. 36 (2), 237–243. doi:10.13005/ojc/360204
Paul, M., Tannenberg, R., Tscheuschner, G., Ponader, M., and Weller, M. G. (2021). Cocaine detection by a laser-induced immunofluorometric biosensor. BIOSENSORS-BASEL. 11 (9), 313. doi:10.3390/bios11090313
Paul, M., Tscheuschner, G., Herrmann, S., and Weller, M. G. (2020). Fast detection of 2,4,6-trinitrotoluene (TNT) at ppt level by a laser-induced immunofluorometric biosensor. BIOSENSORS-BASEL. 10 (8), 89. doi:10.3390/bios10080089
Pavitra, E., Raju, G. S. R., Park, J. Y., Hussain, S. K., Chodankar, N. R., Rao, G. M., et al. (2020). An efficient far-red emitting Ba2LaNbO6:Mn4+ nanophosphor for forensic latent fingerprint detection and horticulture lighting applications. Ceram. Int. 46 (7), 9802–9809. doi:10.1016/j.ceramint.2019.12.253
Paxton, N., Smolan, W., Böck, T., Mary, F. B., Sophia Ponraj, J., Dhanabalan, B., et al. (2021). Forensic analysis on printer inks via chemometrics. IOP Conf. Ser. Mater Sci. Eng. 1192 (1), 012029. doi:10.1088/1757-899X/1192/1/012029
Peltomaa, R., Barderas, R., Benito-Peña, E., and Moreno-Bondi, M. C. (2022). Recombinant antibodies and their use for food immunoanalysis. Anal. Bioanal. Chem. 414 (1), 193–217. doi:10.1007/s00216-021-03619-7
Pena-Pereira, F., Bendicho, C., Pavlović, D. M., Martín-Esteban, A., Díaz-Álvarez, M., Pan, Y., et al. (2021). Miniaturized analytical methods for determination of environmental contaminants of emerging concern – a review. Anal. Chim. Acta. 1158, 238108. doi:10.1016/j.aca.2020.11.040
Peng, D., He, S. A., Zhang, Y. Y., Yao, L. Q., Nie, W. D., Liao, Z. J., et al. (2022). Blue light-induced rare-earth free phosphors for the highly sensitive and selective imaging of latent fingerprints based on enhanced hydrophobic interaction. J. MATERIOMICS 8 (1), 229–238. doi:10.1016/j.jmat.2021.03.005
Peng, D., and Zhao, Z. H. (2023). Highly efficient ferric ion sensing and high resolution latent fingerprint imaging based on fluorescent silicon quantum dots. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 299, 122827. doi:10.1016/j.saa.2023.122827
Peng, D. P., Kavanagh, O., Gao, H. J., Zhang, X. Y., Deng, S. J., Chen, D. M., et al. (2020). Surface plasmon resonance biosensor for the determination of 3-methyl-quinoxaline-2-carboxylic acid, the marker residue of olaquindox, in swine tissues. Food Chem. 302, 124623. doi:10.1016/j.foodchem.2019.04.022
Pereira de Oliveira, L., Rocha, D. P., Reis de Araujo, W., Munoz, R. A. A., Paixao, TRLC, and Salles, M. O. (2018). Forensics in hand: new trends in forensic devices (2013–2017). Anal. Methods 10 (43), 5135–5163. doi:10.1039/c8ay01389f
PerkinElmer (2025). “Spectrum two N FT-NIR spectrometer,”. Waltham, MA: PerkinElmer, Inc. Available online at: https://www.perkinelmer.com/uk/product/spectrum-two-n-ft-nir-sp10-l1390021.
Pholsiri, T., Khamcharoen, W., Vimolmangkang, S., Siangproh, W., and Chailapakul, O. (2023). Paper-based electrochemical sensor for simultaneous detection of salivary Δ⁹-tetrahydrocannabinol and thiocyanate to differentiate illegal cannabis smokers. SENSORS ACTUATORS B-CHEMICAL 383, 133571. doi:10.1016/j.snb.2023.133571
Picone, A. L., Védova, C. O. D., and Romano, R. M. (2020). Study on the detection of cocaine in Argentinian banknotes by SERS. Vib. Spectrosc. 110, 103136. doi:10.1016/j.vibspec.2020.103136
Pierpaoli, M., Lewkowicz, A., Dee, B., Nadolska, M., and Bogdanowicz, R. (2022). Impedimetric sensing of α-amino acids driven by micro-patterned 1,8-Diazafluoren-9-one into titania-boron- doped maze-like nanocarbons. SENSORS ACTUATORS B-CHEMICAL 371, 132459. doi:10.1016/j.snb.2022.132459
Pinto, A. H., Nogueira, A. E., Dalmaschio, C. J., Frigini, I. N., de Almeida, J. C., Ferrer, M. M., et al. (2022). Doped tin dioxide (d-SnO2) and its nanostructures: review of the theoretical aspects, photocatalytic and biomedical applications. Solids 3 (2), 327–360. doi:10.3390/solids3020024
Pliatsikas, N., Kalfagiannis, N., Arvanitidis, J., Christofilos, D., Koutsogeorgis, D. C., Kagkoura, A., et al. (2021). Edge-engineered self-assembled hierarchical plasmonic SERS templates. Appl. Surf. Sci. Adv. 6, 100186. doi:10.1016/j.apsadv.2021.100186
Pogăcean, F., Varodi, C., Măgeruşan, L., Staden, R. I. S. van, and Pruneanu, S. (2022). Highly sensitive electrochemical detection of azithromycin with graphene-modified electrode. Sensors 22 (16), 6181. doi:10.3390/s22166181
Pohanka, M. (2022). Electrochemical hand-held biosensors for biological warfare agents assay. Int. J. Electrochem Sci. 17 (9), 220961. doi:10.20964/2022.09.58
Pöhlmann, C., and Elßner, T. (2020). Multiplex immunoassay techniques for on-site detection of security sensitive toxins. Toxins (Basel). 12 (11), 727. doi:10.3390/toxins12110727
Police Law Enforcement Solutions (2018). Deployment strategies for handheld thermal imagers | police magazine. Available online at: https://www.policemag.com/technology/article/15346300/flir-systems-deployment-strategies-for-handheld-thermal-imagers.
Pollock, S., Crick, D. R., Winter, L. J., and Kemp, M. C. (2021). Multi-sensor threat detection for screening people and their carried bags. Available online at: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11749/1174908/Multi-sensor-threat-detection-for-screening-people-and-their-carried/10.1117/12.2585744.full.doi:10.1117/12.2585744
Pospisilová, E., Paskanová, N., Kuchar, M., and Shishkanova, T. V. (2023). Potentiometric determination of mephedrone in oral fluids with ion-selective membranes. Electroanalysis 35 (6). doi:10.1002/elan.202200468
Poulladofonou, G., Freris, C., Economou, A., and Kokkinos, C. (2022). Wearable electronic finger for date rape drugs screening: from “do-it-yourself” fabrication to self-testing. Anal. Chem. 94 (9), 4087–4094. doi:10.1021/acs.analchem.2c00015
Prabakaran, E., and Pillay, K. (2020a). Synthesis and characterization of fluorescent Europium (III) complex based on D-dextrose composite for latent fingerprint detection. J. SAUDI Chem. Soc. 24 (8), 584–605. doi:10.1016/j.jscs.2020.06.002
Prabakaran, E., and Pillay, K. (2020b). Synthesis and characterization of fluorescent N-CDs/ZnONPs nanocomposite for latent fingerprint detection by using powder brushing method. ARABIAN J. Chem. 13 (2), 3817–3835. doi:10.1016/j.arabjc.2019.01.004
Prabakaran, E., and Pillay, K. (2021). Nanomaterials for latent fingerprint detection: a review. J. Mater. Res. TECHNOLOGY-JMR&T 12, 1856–1885. doi:10.1016/j.jmrt.2021.03.110
Pragya, S. V., Rangan, K., and Khungar, B. (2022). A pyrazinium-based fluorescent chemosensor for the selective detection of 2,4,6-trinitrophenol in an aqueous medium. NEW J. Chem. 46 (35), 16907–16913. doi:10.1039/d2nj02999e
Pramanik, S., Mukherjee, S., Dey, S., Mukherjee, S., Das, S., Ghosh, T., et al. (2022). Cooperative effects of zinc interstitials and oxygen vacancies on violet-bluep hotoluminescence of ZnO nanoparticles: UV radiation induced enhanced latent fingerprint detection. J. Lumin 251, 119156. doi:10.1016/j.jlumin.2022.119156
Prasad, V., Lukose, S., Agarwal, P., and Prasad, L. (2020). Role of nanomaterials for forensic investigation and latent fingerprinting—a review. J. Forensic Sci. 65, 26–36. doi:10.1111/1556-4029.14172
Prasad, V., Prasad, L., Lukose, S., and Agarwal, P. (2021). Latent fingerprint development by using silver nanoparticles and silver nitrate-A comparative study. J. Forensic Sci. 66 (3), 1065–1074. doi:10.1111/1556-4029.14664
Praveen, V. K., Vedhanarayanan, B., Mal, A., Mishra, R. K., and Ajayaghosh, A. (2020). Self-Assembled extended π-systems for sensing and security applications. Acc. Chem. Res. 53 (2), 496–507. doi:10.1021/acs.accounts.9b00580
Press Release (2018). Police trial new Home Office mobile fingerprint technology. London, United Kingdom: UK Home Office. Available online at: https://www.gov.uk/government/news/police-trial-new-home-office-mobile-fingerprint-technology.
Prlainović, N. Ž., Bezbradica, D. I., Knežević-Jugović, Z. D., Stevanović, S. I., Avramov Ivić, M. L., Uskoković, P. S., et al. (2013). Adsorption of lipase from Candida rugosa on multi walled carbon nanotubes. J. Industrial Eng. Chem. 19 (1), 279–285. doi:10.1016/j.jiec.2012.08.012
Promsuwan, K., Kanatharana, P., Thavarungkul, P., and Limbut, W. (2020a). Nitrite amperometric sensor for gunshot residue screening. Electrochim Acta 331, 135309. doi:10.1016/j.electacta.2019.135309
Promsuwan, K., Kanatharana, P., Thavarungkul, P., and Limbut, W. (2020b). Subnanomolar detection of promethazine abuse using a gold nanoparticle-graphene nanoplatelet-modified electrode. Microchim. ACTA 187 (12), 646. doi:10.1007/s00604-020-04616-w
ProPublica (2025). “Courts are beginning to prevent the use of roadside drug tests,”. New York City, NY: ProPublica. Available online at: https://www.propublica.org/article/do-courts-use-roadside-drug-tests-accuracy.
Puiu, M., and Bala, C. (2022). Affinity assays for cannabinoids detection: are they amenable to on-site screening? BIOSENSORS-BASEL. 12 (8), 608. doi:10.3390/bios12080608
Puttasakul, T., Tancharoen, C., Sukjee, W., and Sangma, C. (2022). Vapor-phase substrate nitroreductase reaction and its application as TNT electrochemical gas sensor. IEEE Sens. J. 22 (23), 22368–22373. doi:10.1109/jsen.2022.3214067
PwC (2025). Megatrends. Available online at: https://www.pwc.nl/en/topics/economic-office/megatrends.html.
Qader, B., Hussain, I., Baron, M., Estevez-Brito, R., Cassella, J. P., and Gonzalez-Rodriguez, J. (2022). The production and evaluation of an electrochemical sensors for strychnine and its main metabolite strychnine N-oxide for their use in biological samples. MOLECULES 27 (6), 1826. doi:10.3390/molecules27061826
Qin, P., Yang, H. H., Zhao, X. X., Qu, W. J., Yao, H., Wei, T. B., et al. (2022b). A supramolecular polymer network constructed by pillar[5]arene-based host-guest interactions and its application in nitro explosive detection. J. Incl. Phenom. Macrocycl. Chem. 102 (3–4), 295–302. doi:10.1007/s10847-021-01118-x
Qin, Y., Mo, F., Yao, S., Wu, Y., He, Y., and Yao, W. (2022a). Facile synthesis of porous Ag crystals as SERS sensor for detection of five methamphetamine analogs. Molecules 27 (12), 3939. doi:10.3390/molecules27123939
Qin, Y. D., Bubiajiaer, H., Yao, J., and Zhang, M. W. (2022c). Based on unmodified aptamer-gold nanoparticles colorimetric detection of dexamethasone in food. BIOSENSORS-BASEL. 12 (4), 242. doi:10.3390/bios12040242
Qiu, J. J., Ke, D. M., Lin, H. C., Yu, Y. L., Zheng, Q. H., Li, H., et al. (2023). Fabrication of high sensitivity 2-PEA sensor based on Aldehyde-functionalized mesoporous carbon. Chin. Chem. Lett. 34 (1), 107391. doi:10.1016/j.cclet.2022.03.114
Qiu, Y., Wen, Z. Q., Mei, S. L., Wei, J. X., Chen, Y. Y., Hu, Z., et al. (2021). Cation crosslinking-induced stable copper nanoclusters powder as latent fingerprints marker. NANOMATERIALS 11 (12), 3371. doi:10.3390/nano11123371
Qiu, Y., Yu, S., and Li, L. (2022). Research progress in fluorescent probes for arsenic species. Molecules 27 (23), 8497. doi:10.3390/molecules27238497
Rahman, A., Khaleque, A., Ali, Y., and Rahman, T. (2020). THz spectroscopic sensing of liquid chemicals using a photonic crystal fiber. OSA Contin. 3 (11), 2982–2996. doi:10.1364/osac.403854
Rajan, R., Zakaria, Y., Shamsuddin, S., and Hassan, N. F. N. (2020). Robust synthesis of mono-dispersed spherical silica nanoparticle from rice husk for high definition latent fingermark development. ARABIAN J. Chem. 13 (11), 8119–8132. doi:10.1016/j.arabjc.2020.09.042
Rajput, P., and Shishodia, M. S. (2020). Förster resonance energy transfer and molecular fluorescence near gain assisted refractory nitrides based plasmonic core-shell nanoparticle. Plasmonics 15 (6), 2081–2093. doi:10.1007/s11468-020-01208-5
Ran, C. H., Xu, Z. Z., He, J. P., Man, Z. W., Lv, Z., Wang, P., et al. (2022). Starch-based near-infrared organic fluorophores for the imaging of latent fingerprints. J. Mater Chem. C Mater 10 (43), 16347–16352. doi:10.1039/d2tc03532d
Ranbir, S. G., Singh, H., Kaur, N., and Singh, N. (2023). Azodye-based colorimetric sensor array for identification of biogenic amines: food forensics by portable RGB-based signal readout. SENSORS ACTUATORS B-CHEMICAL 387, 133794. doi:10.1016/j.snb.2023.133794
Rary, E., Anderson, S. M., Philbrick, B. D., Suresh, T., and Burton, J. (2020). Smart sanitation-biosensors as a public health tool in sanitation infrastructure. Int. J. Environ. Res. Public Health 17 (14), 5146. doi:10.3390/ijerph17145146
Rasheed, T., Nabeel, F., Rizwan, K., Bilal, M., Hussain, T., and Shehzad, S. A. (2020). Conjugated supramolecular architectures as state-of-the-art materials in detection and remedial measures of nitro based compounds: a review. TRAC-TRENDS Anal. Chem. 129, 115958. doi:10.1016/j.trac.2020.115958
Rasin, P., Prabhakaran, P., Basheer, S. M., Manakkadan, V., Palakkeezhill, V. N. V., and Sreekanth, A. (2023). Pilot study on the visualization of latent fingerprints and naked eye detection of Hg2+and Zn2+Ions in aqueous media using ninhydrin-based thiosemicarbazone. Anal. Chem. 95 (15), 6448–6457. doi:10.1021/acs.analchem.3c00579
Ravindra, M. K., Darshan, G. P., Lavanya, D. R., Mahadevan, K. M., Premkumar, H. B., Sharma, S. C., et al. (2021). Aggregation induced emission based active conjugated imidazole luminogens for visualization of latent fingerprints and multiple anticounterfeiting applications. Sci. Rep. 11 (1), 16748. doi:10.1038/s41598-021-96011-5
Raza, A., Biswas, A., Zehra, A., and Mengesha, A. (2020). Multiple tier detection of TNT using curcumin functionalized silver nanoparticles. doi:10.1016/j.fsisyn.2020.08.001
Razlansari, M., Ulucan-Karnak, F., Kahrizi, M., Mirinejad, S., Sargazi, S., Mishra, S., et al. (2022). Nanobiosensors for detection of opioids: a review of latest advancements. Eur. J. Pharm. Biopharm. 179, 79–94. doi:10.1016/j.ejpb.2022.08.017
Rebelo, P., Pacheco, J. G., Voroshylova, I. V., Melo, A., Cordeiro, M., and Delerue-Matos, C. (2021). Rational development of molecular imprinted carbon paste electrode for Furazolidone detection: theoretical and experimental approach. SENSORS ACTUATORS B-CHEMICAL 329, 129112. doi:10.1016/j.snb.2020.129112
Reese, T., Suarez, C., Premasiri, W. R., Shaine, M. L., Ingraham, H., Brodeur, A. N., et al. (2021). Surface enhanced Raman scattering specificity for detection and identification of dried bloodstains. Forensic Sci. Int. 328, 111000. doi:10.1016/j.forsciint.2021.111000
Regula Forensics (2025). How to tell if money is fake: detect counterfeit money. Available online at: https://regulaforensics.com/blog/detect-counterfeit-money/.
Ren, J., Mao, S. J., Lin, J. D., Xu, Y., Zhu, Q. Q., and Xu, N. (2022). Research progress of Raman spectroscopy and Raman imaging in pharmaceutical analysis. Curr. Pharm. Des. 28 (18), 1445–1456. doi:10.2174/1381612828666220518145635
Ren, S. F., Zeng, J. L., Zheng, Z. X., and Shi, H. Q. (2021). Perspective and application of modified electrode material technology in electrochemical voltammetric sensors for analysis and detection of illicit drugs. SENSORS ACTUATORS A-PHYSICAL 329, 112821. doi:10.1016/j.sna.2021.112821
Renuka, L., Anantharaju, K. S., Gurushantha, K., Nagabhushana, H., Vidya, Y. S., Suresh, C., et al. (2021). Phase-transformation synthesis of Li codoped ZrO2: Eu3+ nanomaterials: characterization, photocatalytic, luminescent behaviour and latent fingerprint development. Ceram. Int. 47 (7), 10332–10345. doi:10.1016/j.ceramint.2020.11.152
Ribeiro, M. F. M., Bento, F., Ipólito, A. J., and Oliveira, M. F. de (2020). Development of a pencil drawn paper-based analytical device to detect lysergic acid diethylamide (LSD). J. Forensic Sci. 65 (6), 2121–2128. doi:10.1111/1556-4029.14494
Ricci, P. P., and Gregory, O. J. (2020). Continuous monitoring of TATP using ultrasensitive, low-power sensors. IEEE Sens. J. 20 (23), 14058–14064. doi:10.1109/jsen.2020.3008254
Ricci, P. P., and Gregory, O. J. (2021). Free-standing, thin-film sensors for the trace detection of explosives. Sci. Rep. 11 (1), 6623–6710. doi:10.1038/s41598-021-86077-6
Rocha, D. S., Duarte, L. C., Silva-Neto, H. A., Chagas, C. L. S., Santana, M. H. P., Antoniosi, N. R., et al. (2021a). Sandpaper-based electrochemical devices assembled on a reusable 3D-printed holder to detect date rape drug in beverages. Talanta 232, 122408. doi:10.1016/j.talanta.2021.122408
Rocha, R. G., Ribeiro, J. S., Santana, M. H. P., Richter, E. M., and Muñoz, R. A. A. (2021b). 3D-printing for forensic chemistry: voltammetric determination of cocaine on additively manufactured graphene–polylactic acid electrodes. Anal. Methods 13 (15), 1788–1794. doi:10.1039/d1ay00181g
Rocha, R. G., Silva, W. P., Sousa, R. M. F., Junior, M. C., Santana, M. H. P., Munoz, R. A. A., et al. (2020). Investigation of midazolam electro-oxidation on boron doped diamond electrode by voltammetric techniques and density functional theory calculations: application in beverage samples. Talanta 207, 120319. doi:10.1016/j.talanta.2019.120319
Rocher, J., Aldegheishem, A., Alrajeh, N., and Lloret, J. (2022). Develop an optical sensor to detect pollution incidents in sewerage. IEEE Sens. J. 22 (24), 24449–24457. doi:10.1109/jsen.2022.3219931
Rocher, J., Parra, M., Parra, L., Sendra, S., Lloret, J., and Mengual, J. (2021). “A low-cost sensor for detecting illicit discharge in sewerage,”. J sens. Editor C. Michel, 2021. doi:10.1155/2021/6650157
Ross, G. M. S., Zhao, Y., Bosman, A. J., Geballa-Koukoula, A., Zhou, H., Elliott, C. T., et al. (2023). Best practices and current implementation of emerging smartphone-based (bio)sensors- Part 1: data handling and ethics. TRAC-TRENDS Anal. Chem. 158, 116863. doi:10.1016/j.trac.2022.116863
Roushani, M., Ghanbarzadeh, M., and Shahdost-Fard, F. (2021). Fabrication of an electrochemical biodevice for ractopamine detection under a strategy of a double recognition of the aptamer/molecular imprinting polymer. BIOELECTROCHEMISTRY 138, 107722. doi:10.1016/j.bioelechem.2020.107722
Ruchala, I., Battisti, U. M., Nguyen, V. T., Chen, R. Y. T., Glennon, R. A., and Eltit, J. M. (2021). Functional characterization of N-octyl 4-methylamphetamine variants and related bivalent compounds at the dopamine and serotonin transporters using Ca2+ channels as sensors. Toxicol. Appl. Pharmacol. 419, 115513. doi:10.1016/j.taap.2021.115513
Rui, H., Ting, Y., and Yan, M. Y. (2023). Advances in the application of novel carbon nanomaterials in illicit drug detection. NEW J. Chem. 47 (5), 2161–2172. doi:10.1039/d2nj04816g
Ryu, J., and Kim, Y. (2022). Overcoming interferences in the colorimetric and fluorimetric detection of γ-hydroxybutyrate in spiked beverages. SENSORS ACTUATORS B-CHEMICAL 364, 131861. doi:10.1016/j.snb.2022.131861
Sachdeva, D., Singh, A., and Agrawal, V. V. (2021). Electrochemical detection of anti-anxiety drug clonazepam using electrophoretically deposited gold nanoparticles. MAPAN-JOURNAL METROLOGY Soc. INDIA 36 (3), 639–649. doi:10.1007/s12647-021-00484-8
Sadeghi, M., Jahanshahi, M., and Javadian, H. (2020). Highly sensitive biosensor for detection of DNA nucleobases: enhanced electrochemical sensing based on polyaniline/single-layer MoS2 nanosheets nanocomposite modified carbon paste electrode. Microchem. J. 152, 104315. doi:10.1016/j.microc.2019.104315
Saha, A., Kurrey, R., Verma, S. K., and Deb, M. K. (2022). Cationic polystyrene resin bound silver nanocomposites assisted fourier transform infrared spectroscopy for enhanced catalytic reduction of 4-nitrophenol in aqueous medium. Chem. East. 4 (4), 1757–1774. doi:10.3390/chemistry4040114
Saichanapan, J., Promsuwan, K., and Limbut, W. (2020). Adsorption and determination of sibutramine in illegal slimming product using porous graphene ink-modified electrode. Talanta 212, 120788. doi:10.1016/j.talanta.2020.120788
Saisahas, K., Soleh, A., Promsuwan, K., Saichanapan, J., Phonchai, A., Sadiq, N. S. M., et al. (2022a). Nanocoral-like polyaniline-modified graphene-based electrochemical paper-based analytical device for a portable electrochemical sensor for xylazine detection. ACS Omega 7 (15), 13913–13924. doi:10.1021/acsomega.2c00295
Saisahas, K., Soleh, A., Somsiri, S., Senglan, P., Promsuwan, K., Saichanapan, J., et al. (2022b). Electrochemical sensor for methamphetamine detection using laser-induced porous graphene electrode. Nanomaterials 12 (1), 73. doi:10.3390/nano12010073
Sanguarnsak, C., Promsuwan, K., Saichanapan, J., Soleh, A., Saisahas, K., Phua, C. H., et al. (2022). Voltammetric amitriptyline determination using a metal-free electrode based on phosphorus-doped multi-walled carbon nanotubes. J. Electrochem Soc. 169 (1), 017510. doi:10.1149/1945-7111/ac48c4
Sanli, S., Moulahoum, H., Ghorbanizamani, F., Gumus, Z. P., and Timur, S. (2020). On-site testosterone biosensing for doping detection: electrochemical immunosensing via functionalized magnetic nanoparticles and screen-printed electrodes. ChemistrySelect 5 (47), 14911–14916. doi:10.1002/slct.202004204
Santana, E. R., Martins, E. C., and Spinelli, A. (2021). Electrode modified with nitrogen-doped graphene quantum dots supported in chitosan for triclocarban monitoring. Microchem. J. 167, 106297. doi:10.1016/j.microc.2021.106297
Santillo, M. F. (2020). Trends using biological target-based assays for drug detection in complex sample matrices. Anal. Bioanal. Chem. 412 (17), 3975–3982. doi:10.1007/s00216-020-02681-x
Santoro, R., Caccia, M., Ampilogov, N., Malinverno, L., Allwork, C., Ellis, M., et al. (2020). Qualification of a compact neutron detector based on SiPM. J. Instrum. 15 (5), C05053. doi:10.1088/1748-0221/15/05/c05053
Santos, A., Deokaran, G. O., Costa, C. V., Gama, L., Mazzini, E. G., de Assis, A. M. L., et al. (2021). A “turn-off” fluorescent sensor based on electrospun polycaprolactone nanofibers and fluorene(bisthiophene) derivative for nitroaromatic explosive detection. Forensic Sci. Int. 329, 111056. doi:10.1016/j.forsciint.2021.111056
Schmidt, V. M., Zelger, P., Wöss, C., Huck, C. W., Arora, R., Bechtel, E., et al. (2022). Post-Mortem interval of human skeletal remains estimated with handheld NIR spectrometry. BIOLOGY-BASEL 11 (7), 1020. doi:10.3390/biology11071020
Schram, J., Parrilla, M., Slosse, A., Van Durme, F., Aberg, J., Bjork, K., et al. (2022). Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples. Microchem. J. 179, 107518. doi:10.1016/j.microc.2022.107518
Scorsone, E., Manai, R., Cali, K., Ricatti, M. J., Farno, S., Persaud, K., et al. (2021). Biosensor array based on ligand binding proteins for narcotics and explosives detection. Sens. Actuators B Chem. 334, 129587. doi:10.1016/j.snb.2021.129587
Sekar, A., Vadivel, R., Munuswamy, R. G., and Yadav, R. (2021). Fluorescence spotting of latent sweat fingerprints with zinc oxide carbon dots embedded in a silica gel nanopowder: a green approach. NEW J. Chem. 45 (37), 17447–17460. doi:10.1039/d1nj03901f
Senesi, G. S., Harmon, R. S., and Hark, R. R. (2021). Field-portable and handheld laser-induced breakdown spectroscopy: historical review, current status and future prospects. Spectrochim. Acta Part B A. T. Spectrosc. 175, 106013. doi:10.1016/j.sab.2020.106013
Senra, M. V. X., and Fonseca, A. L. (2021). New tyrosinases with putative action against contaminants of emerging concern. Proteins Struct. Funct. Bioinforma. 89 (9), 1180–1192. doi:10.1002/prot.26139
Sfragano, P. S., Laschi, S., and Palchetti, I. (2020). Sustainable printed electrochemical platforms for greener analytics. Front. Chem. 8, 644. doi:10.3389/fchem.2020.00644
Sha, O., Liu, H., Ye, M. Q., Zhu, Y. Q., Yao, J. W., Li, Z. M., et al. (2021). Solvent-free mechanochemical preparation of graphene oxide-Fe3O4 and its application in magnetic dispersive solid-phase extraction of illegal dyes in food samples. J. Sep. Sci. 44 (11), 2290–2300. doi:10.1002/jssc.202001084
Sha, X. Y., Han, S., Zhao, H., Li, N., Zhang, C., and Hasi, W. L. J. (2020). A rapid detection method for on-site screening of estazolam in beverages with Au@Ag core-shell nanoparticles paper-based SERS substrate. Anal. Sci. 36 (6), 667–671. doi:10.2116/analsci.19p361
Shabashini, A., Panja, S. K., and Nandi, G. C. (2021). Applications of carbon dots (CDs) in latent fingerprints imaging. Chem. Asian J. 16 (9), 1057–1072. doi:10.1002/asia.202100119
Shah, S. N. A., Gul, E., Hayat, F., Rehman, Z., and Khan, M. (2023). Advancement and perspectives of sulfite-based chemiluminescence, its mechanism, and sensing. CHEMOSENSORS 11 (4), 212. doi:10.3390/chemosensors11040212
Shahbazi, S., Becker, T., Jia, G. H., and Lewis, S. W. (2022). Luminescent nanostructures for the detection of latent fingermarks: a review. WILEY Interdiscip. Rev. FORENSIC Sci. 4 (2). doi:10.1002/wfs2.1440
Shahbazi, S., Boseley, R., Grant, B., Chen, D. C., Becker, T., Adegoke, O., et al. (2020). Luminescence detection of latent fingermarks on non -porous surfaces with heavy -metal -free quantum dots. FORENSIC Chem. 18, 100222. doi:10.1016/j.forc.2020.100222
Shalini Devi, K. S., Anantharamakrishnan, A., and Maheswari Krishnan, U. (2021). Expanding horizons of metal oxide-based chemical and electrochemical sensors. Electroanalysis 33 (9), 1979–1996. doi:10.1002/elan.202100087
Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: elaboration and explanation. BMJ 349, g7647. doi:10.1136/bmj.g7647
Shao, Y. L., Duan, J. Q., Wang, M., Cao, J., She, Y. X., Cao, Z., et al. (2023). Application of molecularly imprinted electrochemical biomimetic sensors for detecting small molecule food contaminants. Polym. (Basel) 15 (1), 187. doi:10.3390/polym15010187
Sharma, V., Choudhary, S., Mankotia, P., Kumari, A., Sharma, K., Sehgal, R., et al. (2021). Nanoparticles as fingermark sensors. TRAC-TRENDS Anal. Chem. 143, 116378. doi:10.1016/j.trac.2021.116378
Shi, B. Q., Catsamas, S., Kolotelo, P., Wang, M., Lintern, A., Jovanovic, D., et al. (2021). A low-cost water depth and electrical conductivity sensor for detecting inputs into urban stormwater networks. SENSORS 21 (9), 3056. doi:10.3390/s21093056
Shin, J., Song, Y. G., Jung, S. J., Yoon, T., Kim, G. S., Kim, J. H., et al. (2020). Smart forensic kit: real-time estimation of postmortem interval using a highly sensitive gas sensor for microbial forensics. SENSORS ACTUATORS B-CHEMICAL 322, 128612. doi:10.1016/j.snb.2020.128612
Shishkanova, T. V., Trchová, M., Sinica, A., Fitl, P., and Matejka, P. (2021). Electrochemical sensor for phenylpropanolamine based on oligomer derived from 3-hydroxybenzoic acid with dibenzo-18-crown-6. J. Electroanal. Chem., 882. doi:10.1016/j.jelechem.2020.114963
Shishkanova, T. V., Vatrsková, L., Spálovská, D., Králík, F., Curínová, P., Winkler, M., et al. (2020). Complexation of cathinones by 4-tert-butylcalix[4]arene tetra-acetate as a possible technique for forensic analysis. Forensic Toxicol. 38 (1), 70–78. doi:10.1007/s11419-019-00489-8
Shkembi, X., Botero, M. L., Skouridou, V., Jauset-Rubio, M., Svobodova, M., Ballester, P., et al. (2022). Novel nandrolone aptamer for rapid colorimetric detection of anabolic steroids. Anal. Biochem. 658, 114937. doi:10.1016/j.ab.2022.114937
Shrivastava, P., Jain, S. K., Kumar, N., Jain, V. K., and Nagpal, S. (2021a). Handheld device for rapid detection of lead (Pb2+) in gunshot residue for forensic application. Microchem. J. 165, 106186. doi:10.1016/j.microc.2021.106186
Shrivastava, P., Jain, V. K., and Nagpal, S. (2021c). Gunshot residue detection technologies—a review. Egypt. J. Forensic Sci. 11 (1), 11–21. doi:10.1186/s41935-021-00223-9
Shrivastava, P., Singh, B. P., Jain, S. K., Jain, V. K., and Nagpal, S. (2021b). A novel approach to detect barium in gunshot residue using a handheld device: a forensic application. Anal. Methods 13 (38), 4379–4389. doi:10.1039/d1ay01272j
Silva, T. G., and da Paixao, T. (2022). Development and evaluation of two different electronic tongues aiming to the discrimination of cutting agents found in cocaine seized samples. Braz. J. Anal. Chem. 9 (34), 188–197. doi:10.30744/brjac.2179-3425.AR-59-2021
Silva, W. P., Rocha, R. G., Arantes, L. C., Lima, C. D., Melo, L. M. A., Munoz, R. A. A., et al. (2021). Development of a simple and rapid screening method for the detection of 1-(3-chlorophenyl)piperazine in forensic samples. Talanta 233, 122597. doi:10.1016/j.talanta.2021.122597
Singh, A. P., Balayan, S., Gupta, S., Jain, U., Sarin, R. K., and Chauhan, N. (2021). Detection of pesticide residues utilizing enzyme-electrode interface via nano-patterning of TiO2 nanoparticles and molybdenum disulfide (MoS2) nanosheets. PROCESS Biochem. 108, 185–193. doi:10.1016/j.procbio.2021.06.015
Singh, A. P., Balayan, S., Hooda, V., Sarin, R. K., and Chauhan, N. (2020). Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. Int. J. Biol. Macromol. 164, 3943–3952. doi:10.1016/j.ijbiomac.2020.08.215
Singh, H., Kour, S., and Selvaraj, M. (2022a). Magnetically separable template assisted iron nanoparticle for the enhancement of latent fingerprints. J. INDIAN Chem. Soc. 99 (9), 100661. doi:10.1016/j.jics.2022.100661
Singh, N. K., Sidhu, G. K., and Gupta, K. (2022b). Current and future perspective of devices and diagnostics for opioid and OIRD. Biomedicines 10 (4), 743. doi:10.3390/biomedicines10040743
Singh, V., Kamthania, M. C., Mishra, N., and Singh, S. (2014). Biosensor developments: application in crime detection. Int. J. Eng. Tech. Res. (special issue), 163.
Smith, M., Logan, M., Bazley, M., Blanchfield, J., Stokes, R., Blanco, A., et al. (2021). A Semi-quantitative method for the detection of fentanyl using surface-enhanced Raman scattering (SERS) with a handheld Raman instrument. J. Forensic Sci. 66 (2), 505–519. doi:10.1111/1556-4029.14610
Smith, V., Devane, D., Begley, C. M., and Clarke, M. (2011). Methodology in conducting a systematic review of systematic reviews of healthcare interventions. BMC Med. Res. Methodol. 11 (1), 15. doi:10.1186/1471-2288-11-15
Soanes, C., and Stevenson, A. (2008). Concise oxford English dictionary. 6th ed. Oxford University Press. Available online at: https://www.worldcat.org/title/concise-oxford-english-dictionary/oclc/226280329?page=citation.
Sohouli, E., Ghalkhani, M., Rostami, M., Rahimi-Nasrabadi, M., and Ahmadi, F. (2020). A noble electrochemical sensor based on TiO2@CuO-N-rGO and poly (L-cysteine) nanocomposite applicable for trace analysis of flunitrazepam. Mater. Sci. Eng. C-MATERIALS Biol. Appl. 117, 111300. doi:10.1016/j.msec.2020.111300
Soliman, S. S., Mahmoud, A. M., Elghobashy, M. R., Zaazaa, H. E., and Sedik, G. A. (2023). Point-of-care electrochemical sensor for selective determination of date rape drug “ketamine” based on core-shell molecularly imprinted polymer. Talanta. 254, 124151. doi:10.1016/j.talanta.2022.124151
Solin, K., Vuoriluoto, M., Khakalo, A., and Tammelin, T. (2023). Cannabis detection with solid sensors and paper-based immunoassays by conjugating antibodies to nanocellulose. Carbohydr. Polym. 304, 120517. doi:10.1016/j.carbpol.2022.120517
Son, S. U., Jang, S., Kang, B., Kim, J., Lim, J., Seo, S., et al. (2021). Colorimetric paper sensor for visual detection of date-rape drug γ-hydroxybutyric acid (GHB). SENSORS ACTUATORS B-CHEMICAL 347, 130598. doi:10.1016/j.snb.2021.130598
Soni, S., Jain, U., Burke, D. H., and Chauhan, N. (2022a). Development of nanomaterial-modified impedimetric aptasensor—a single-step strategy for 3,4-methylenedioxymethylamphetamine detection. Biosens. (Basel). 12 (7), 538. doi:10.3390/bios12070538
Soni, S., Jain, U., Burke, D. H., and Chauhan, N. (2022b). Recent trends and emerging strategies for aptasensing technologies for illicit drugs detection. J. Electroanal. Chem. 910, 116128. doi:10.1016/j.jelechem.2022.116128
Soni, S., Jain, U., and Chauhan, N. (2021). A systematic review on sensing techniques for drug-facilitated sexual assaults (DFSA) monitoring. Chin. J. Anal. Chem. 49 (11), 83–92. doi:10.1016/j.cjac.2021.09.001
Sposito, H. G. M., Lobato, A., Tasic, N. O., Maldaner, A. O., Paixao, T., and Goncalves, L. M. (2022). Swift electrochemical sensing of diltiazem employing highly-selective molecularly-imprinted 3-amino-4-hydroxybenzoic acid. J. Electroanal. Chem. 911, 116207. doi:10.1016/j.jelechem.2022.116207
Srivastava, B. B., Gupta, S. K., and Mao, Y. B. (2020). Single red emission from upconverting ZnGa2O4:Yb,Er nanoparticles co-doped by Cr3+. J. Mater Chem. C Mater 8 (19), 6370–6379. doi:10.1039/d0tc00411a
Su, H., Li, S., Jin, Y., Xian, Z., Yang, D., Zhou, W., et al. (2017). Nanomaterial-based biosensors for biological detections. Adv. Health Care Technol. 3, 19–29. doi:10.2147/ahct.s94025
Su, L. J. (2022). Overview on the sensors for direct electrochemical detection of illicit drugs in sports. Int. J. Electrochem Sci. 17 (12), 221260. doi:10.20964/2022.12.64
Su, X. M., Liu, X. Y., Xie, Y. C. Z., Chen, M. Y., Zhong, H., and Li, M. (2023). Quantitative label-free SERS detection of trace fentanyl in biofluids with a freestanding hydrophobic plasmonic paper biosensor. Anal. Chem. 95, 3821–3829. doi:10.1021/acs.analchem.2c05211
Su, Z., Li, Y., Li, J., and Dou, X. (2021). Ultrasensitive luminescent turn-on detection of perchlorate particulates by triggering supramolecular self-assembly of platinum(II) complex in hydrogel matrix. Sens. Actuators B Chem. 336, 129728. doi:10.1016/j.snb.2021.129728
Su, Z., Li, Y. S., Li, J. G., Li, K., and Dou, X. C. (2022). Ultrasensitive dual-mode visualization of perchlorate in water, soil and air boosted by close and stable Pt-Pt packing endowed low-energy absorption and emission. J. Mater Chem. A Mater 10 (15), 8195–8207. doi:10.1039/d2ta00843b
Suarez, C., Premasiri, W. R., Ingraham, H., Brodeur, A. N., and Ziegler, L. D. (2023). Ultra-sensitive, rapid detection of dried bloodstains by surface enhanced Raman scattering on Ag substrates. Talanta 259, 124535. doi:10.1016/j.talanta.2023.124535
Suhasini, R., Karpagam, R., Thirumoorthy, K., and Thiagarajan, V. (2021). “Turn-on” unsymmetrical azine based fluorophore for the selective detection of diethylchlorophosphate via photoinduced electron transfer to intramolecular charge transfer pathway. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 263, 120206. doi:10.1016/j.saa.2021.120206
Suherman, K. D. C., Morita, K., and Kawaguchi, T. (2020). Surface plasmon resonance signal amplification using secondary antibody interaction for illegal compound detection. Key Eng. Mater 845, 103–108. doi:10.4028/www.scientific.net/KEM.845.103
Sun, R. M., Lv, R. J., Li, Y. H., Du, T., Chen, L. X., Zhang, Y., et al. (2023). Simple and sensitive electrochemical detection of sunset yellow and Sudan I in food based on AuNPs/Zr-MOF-Graphene. Food control. 145, 109491. doi:10.1016/j.foodcont.2022.109491
Sun, Y. Y., Li, W., Zhao, L. Q., Li, F. Y., Xie, Y. F., Yao, W. R., et al. (2021). Simultaneous SERS detection of illegal food additives rhodamine B and basic orange II based on Au nanorod-incorporated melamine foam. Food Chem. 357, 129741. doi:10.1016/j.foodchem.2021.129741
Sundhoro, M., Agnihotra, S. R., Khan, N. D., Barnes, A., BelBruno, J., and Mendecki, L. (2021). Rapid and accurate electrochemical sensor for food allergen detection in complex foods. Sci. Rep. 11 (1), 20831. doi:10.1038/s41598-021-00241-6
Suresh, C., Darshan, G. P., Sharma, S. C., Venkataravanappa, M., Premkumar, H. B., Shanthi, S., et al. (2020). Imaging sweat pore structures in latent fingerprints and unclonable anti-counterfeiting patterns by sensitizers blended LaOF: Pr3+ nanophosphors. Opt. Mater (Amst). 100, 109625. doi:10.1016/j.optmat.2019.109625
Suryoprabowo, S., Liu, L. Q., Kuang, H., Cui, G., and Xu, C. L. (2021). Fluorescence based immunochromatographic sensor for rapid and sensitive detection of tadalafil and comparison with a gold lateral flow immunoassay. Food Chem. 342, 128255. doi:10.1016/j.foodchem.2020.128255
Suslick, K. S., Rakow, N. A., and Sen, A. (2004). Colorimetric sensor arrays for molecular recognition. Tetrahedron 60 (49), 11133–11138. doi:10.1016/j.tet.2004.09.007
Swathi, B. N., Krushna, B. R. R., Prasad, B. D., Sharma, S. C., Subramanian, B., and Nagabhushana, H. (2023). Unclonable fluorescence of MgO-ZrO2:Tb3+ nanocomposite for versatile applications in data security, dermatoglyphics. LUMINESCENCE. 38 (3), 232–249. doi:10.1002/bio.4440
Symonsbergen, D. J., Kangas, M. J., Perez, M., and Holmes, A. E. (2018). International Journal of Criminal and Forensic Science Evaluation of the NIK® test: primary general screening test for the presumptive identification of drugs.
Szczeszak, A., Skwierczynska, M., Przybylska, D., Runowski, M., Smiechowicz, E., Erdman, A., et al. (2020). Upconversion luminescence in cellulose composites (fibres and paper) modified with lanthanide-doped SrF2 nanoparticles. J. Mater Chem. C Mater 8 (34), 11922–11928. doi:10.1039/D0TC02050H
Takahashi, F., Kazui, Y., Miyaguchi, H., Ohmori, T., Tanaka, R., and Jin, J. Y. (2021). Simple colorimetric screening of the nerve agent VX using gold nanoparticles and a hand-powered extraction device. SENSORS ACTUATORS B-CHEMICAL 327, 128902. doi:10.1016/j.snb.2020.128902
Takahashi, F., Nitta, S., Shimizu, R., Shoji, T., Tatsumi, H., and Jin, J. (2022). Sensitive screening of methamphetamine stimulant using potential-modulated electrochemiluminescence. Anal. Chim. Acta. 1191, 339229. doi:10.1016/j.aca.2021.339229
Tan, R., Shen, Y., Li, D. N., Yang, Y., and Tu, Y. F. (2022). The electrochemiluminescent immunosensors for point-of-care testing of methamphetamine using a portable meter. Electroanalysis 34 (2), 423–431. doi:10.1002/elan.202060590
Tan, X. P., Fan, Y. M., Wang, S., Wu, Y., Shi, W. B., Huang, T., et al. (2020). Ultrasensitive and highly selective electrochemical sensing of sodium picrate by Dihydroxylatopillar[6]arene-Modified gold nanoparticles and cationic Pillar[6]arene functionalized covalent organic framework. Electrochim Acta 335, 135706. doi:10.1016/j.electacta.2020.135706
Tang, C., He, Z., Liu, H., Xu, Y., Huang, H., Yang, G., et al. (2020). Application of magnetic nanoparticles in nucleic acid detection. J. Nanobiotechnology 18, 62–19. doi:10.1186/s12951-020-00613-6
Tao, X. Q., Peng, Y. Y., and Liu, J. W. (2020). Nanomaterial-based fluorescent biosensors for veterinary drug detection in foods. J. Food Drug Anal. 28 (4), 575–594. doi:10.38212/2224-6614.1267
Tasangtong, B., Henry, C. S., and Sameenoi, Y. (2023). Diameter-based inkjet-printed paper devices for formaldehyde analysis in foods. Food control. 145, 109408. doi:10.1016/j.foodcont.2022.109408
Tay, L. L., and Hulse, J. (2021). Methodology for binary detection analysis of inkjet-printed optical sensors for chemical detection. MRS Adv. 6 (1), 1–5. doi:10.1557/s43580-021-00004-5
Teng, X., Ding, X., She, Z., Li, Y., and Xiong, X. (2023). Preparation of functionalized magnetic polystyrene microspheres and their application in food safety detection. Polym. (Basel) 15 (1), 77. doi:10.3390/polym15010077
Testler (2025). Device type approval tests. Available online at: https://www.laboratuar.com/en/testler/tip-onay-testleri/cihaz-tip-onay-testleri/.
Teymourian, H., Parrilla, M., Sempionatto, J. R., Montiel, N. F., Barfidokht, A., Van Echelpoel, R., et al. (2020). Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 5 (9), 2679–2700. doi:10.1021/acssensors.0c01318
Thakarda, J., Agrawal, B., Anil, D., Jana, A., and Maity, P. (2020). Detection of trace-level nitroaromatic explosives by 1-pyreneiodide-ligated luminescent gold nanostructures and their forensic applications. LANGMUIR 36 (50), 15442–15449. doi:10.1021/acs.langmuir.0c03117
Thermo Fisher Scientific (2024). Rapid DNA solutions for law enforcement. Thermo Fisher Scientific. Available online at: https://www.thermofisher.com/uk/en/home/industrial/forensics/human-identification/forensic-dna-analysis/dna-analysis/rapidhit-id-system-human-identification/rapidhit-id-system-law-enforcement.html.
Thermo Scientific (2024). Product specifications Thermo scientific TruDefender FT and TruDefender FTi handheld FTIR for unknown chemical and explosives identification. Available online at: www.thermoscientific.com/safety-chemid.
Thipwimonmas, Y., Jaidam, J., Samoson, K., Khunseeraksa, V., Phonchai, A., Thiangchanya, A., et al. (2021). A simple and rapid spectrophotometric method for nitrite detection in small sample volumes. CHEMOSENSORS 9 (7), 161. doi:10.3390/chemosensors9070161
Thomas, J., Brunton, J., and Graziosi, S. (2010). EPPI-reviewer 4.0: software for research synthesis. EPPI-centre software: London: social science research unit. London, United Kingdom: EPPI-Centre, Social Science Research Unit, Institute of Education, University of London.
Tiedge, T. M., McAtee, P. D., McCormick, M. N., Lakhtakia, A., and Roy, R. (2020). Massively parallel sequencing and STR analysis from partial bloody fingerprints enhanced with columnar thin films. FORENSIC Sci. INTERNATIONAL-GENETICS 49, 102369. doi:10.1016/j.fsigen.2020.102369
Tomar, A., Gupta, R. R., Mehta, S. K., and Sharma, S. (2023). An overview of security materials in banknotes and analytical techniques in detecting counterfeits. Crit. Rev. Anal. Chem. 54, 2865–2878. doi:10.1080/10408347.2023.2209185
Torrarit, K., Kongkaew, S., Samoson, K., Kanatharana, P., Thavarungkul, P., Chang, K. H., et al. (2022). Flow injection amperometric measurement of formalin in seafood. ACS Omega 7 (21), 17679–17691. doi:10.1021/acsomega.2c00515
Tortajada-Genaro, L. A., Lucío, M. I., and Maquieira, A. (2022). Fast DNA biosensing based on isothermal amplification, unmodified gold nanoparticles, and smartphone detection. Food control. 137, 108943. doi:10.1016/j.foodcont.2022.108943
Trabelsi, H., Akl, M., and Akl, S. H. (2021). Ultrasound assisted Eu3+–doped strontium titanate nanophosphors: labeling agent useful for visualization of latent fingerprints. Powder Technol. 384, 70–81. doi:10.1016/j.powtec.2021.02.006
TRUSCANRM (2025). Handheld Raman analyzer. Available online at: https://www.thermofisher.com/order/catalog/product/TRUSCANRM.
Truta, F., Florea, A., Cernat, A., Tertis, M., Hosu, O., de Wael, K., et al. (2020). Tackling the problem of sensing commonly abused drugs through nanomaterials and (Bio)Recognition approaches. Front. Chem. 8, 561638. doi:10.3389/fchem.2020.561638
Tuccitto, N., Riela, L., Zammataro, A., Spitaleri, L., Li-Destri, G., Sfuncia, G., et al. (2020c). Functionalized carbon nanoparticle-based sensors for chemical warfare agents. ACS Appl. Nano Mater 3 (8), 8182–8191. doi:10.1021/acsanm.0c01593
Tuccitto, N., Spitaleri, L., Gulino, A., Li Destri, G., Pappalardo, A., and Sfrazzetto, G. T. (2020b). The state of the art in biodefense related bacterial pathogen detection using bacteriophages: how it started and how it’s going. Viruses 12 (12), 1393. doi:10.3390/v12121393
Tuccitto, N., Spitaleri, L., Gulino, A., Li Destri, G., Sfrazzetto, G. T., and Trusso Sfrazzetto, G. (2020a). Supramolecular sensing of a chemical warfare agents simulant by functionalized carbon nanoparticles. Molecules 25 (23), 5731. doi:10.3390/molecules25235731
Tyree, D. J., Brothers, M. C., Sim, D., Flory, L., Tomb, M., Strayer, K., et al. (2023). Detection of asthma inhaler use via terahertz spectroscopy. ACS Sens. 8, 610–618. doi:10.1021/acssensors.2c01795
United Nations (2025). Sustainable development goals. New York, United States: United Nations. Available online at: https://sdgs.un.org/.
Upadhyay, H., Harikrishnan, U., Bhatt, D., Dhadnekar, N., Kumar, K., and Panchal, M. (2022). Calixarene: the dawn of a new era in forensic chemistry. Curr. Org. Chem. 26 (22), 2005–2015. doi:10.2174/1385272827666230118094847
Urbanová, V., and Pumera, M. (2020). Uranium detection by 3D-printed titanium structures: towards decentralized nuclear forensic applications. Appl. Mater Today 21, 100881. doi:10.1016/j.apmt.2020.100881
Uttpal, A., Singh, C. A. K., Patrik, O., Amarnath, M., Ondrej, K., Raval, I. H., et al. (2022). Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl. Microbiol. Biotechnol. 106 (8), 2827–2853. doi:10.1007/s00253-022-11901-6
Vadivel, R., Nirmala, M., and Anbukumaran, K. (2021). Commonly available, everyday materials as non-conventional powders for the visualization of latent fingerprints. FORENSIC Chem. 24, 100339. doi:10.1016/j.forc.2021.100339
van Damme, I. M., Mestres-Fitó, P., Ramaker, H. J., Hulsbergen, A. W. C., Heijden, AEDM van der, Kranenburg, R. F., et al. (2023). Rapid and on-scene chemical identification of intact explosives with portable near-infrared spectroscopy and multivariate data analysis. Sensors 23 (8), 3804. doi:10.3390/s23083804
Van Echelpoel, R., Kranenburg, R. F., van Asten, A. C., and De Wael, K. (2022). Electrochemical detection of MDMA and 2C-B in ecstasy tablets using a selectivity enhancement strategy by in-situ derivatization. FORENSIC Chem. 27, 100383. doi:10.1016/j.forc.2021.100383
Van Echelpoel, R., Parrilla, M., Sleegers, N., Shanmugam, S. T., van Nuijs, A. L. N., Slosse, A., et al. (2023). Validated portable device for the qualitative and quantitative electrochemical detection of MDMA ready for on-site use. Microchem. J. 190, 108693. doi:10.1016/j.microc.2023.108693
Vargas, A. F. L., Buitrago, W. G. Q., Silva, D. C. C., and Suarez, J. F. M. (2022). Voltammetric responses of a CYP2D6-based biosensor to 3,4-methylenedioxymethamphetamine (MDMA) and the synthetic cathinone α-pyrrolidinopentiophenone (α-PVP). ChemistrySelect 7 (42). doi:10.1002/slct.202202748
Vendamani, V. S., Beeram, R., Rao, S., and Rao, S. V. (2023). Protocol for designing AuNP-capped Ag dendrites as surface-enhanced Raman scattering sensors for trace molecular detection. Star. Protoc. 4 (1), 102068. doi:10.1016/j.xpro.2023.102068
Verbitskiy, E. V., Rusinov, G. L., Chupakhin, O. N., and Charushin, V. N. (2020). Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: a review. DYES PIGMENTS 180, 108414. doi:10.1016/j.dyepig.2020.108414
Verhagen, A., and Kelarakis, A. (2020). Carbon dots for forensic applications: a critical review. NANOMATERIALS 10 (8), 1535. doi:10.3390/nano10081535
Viola, R., Liberatore, N., Mengali, S., Elmi, I., Tamarri, F., and Zampolli, S. (2023). Lightweight gas sensor based on MEMS pre-concentration and infrared absorption spectroscopy inside a hollow fiber. SENSORS 23 (5), 2809. doi:10.3390/s23052809
Vuckovic, N., Glodovic, N., Radovanovic, Z., Janackovic, D., and Milasinovic, N. (2021). A novel chitosan/tripolyphosphate/L-lysine conjugates for latent fingerprints detection and enhancement. J. Forensic Sci. 66 (1), 149–160. doi:10.1111/1556-4029.14569
Vunckx, K., Geelen, B., Garcia Munoz, V., Lee, W., Chang, H., Van Dorpe, P., et al. (2020). Towards a miniaturized application-specific Raman spectrometer. (Bellingham, WA: SPIE (The International Society for Optics and Photonics)). 8.
Wahba, M. E. K., Ayman, A., Zeid, A. M., El-Shabrawy, Y., and Draz, M. E. (2023). Portable and green solid contact potentiometric sensor for the rapid and direct assay of clozapine in post-mortem rat liver and dosage forms: an analytical approach to forensic and pharmaceutical samples. Microchem. J. 186, 108364. doi:10.1016/j.microc.2022.108364
Wan, J. W., Chen, L., Li, W., Cui, S. F., and Yuan, B. F. (2022). Preparation of novel magnetic nanomaterials based on “facile coprecipitation” for developing latent fingerprints (LFP) in crime scenes. ACS Omega 7 (2), 1712–1721. doi:10.1021/acsomega.1c04208
Wang, B., Kang, K., Ji, X., Liu, Y., Li, X., Wang, L., et al. Multifunctional encapsulating gold nanoparticles into Cu-Hemin/Metal-Organic frameworks for catechol electrochemical detection on graphene-based electrode (2020c). ;15, 2050155, doi:10.1142/s179329202050155612).
Wang, B., Xie, K. Z., and Lee, K. H. (2021c). Veterinary drug residues in animal-derived foods: sample preparation and analytical methods. FOODS 10 (3), 555. doi:10.3390/foods10030555
Wang, C., Luo, J., Dou, H., Raise, A., Ali, M. S., Fan, W., et al. (2023b). Optimization and analytical behavior of a morphine electrochemical sensor in environmental and biological samples based on graphite rod electrode using graphene/Co3O4 nanocomposite. Chemosphere 326, 138451. doi:10.1016/j.chemosphere.2023.138451
Wang, C. D., Xu, X. H., Qiu, G. Y., Ye, W. C., Li, Y. M., Harris, R. A., et al. (2021e). Group-Targeting SERS screening of total benzodiazepines based on large-size (111) faceted silver nanosheets decorated with zinc oxide nanoparticles. Anal. Chem. 93 (7), 3403–3410. doi:10.1021/acs.analchem.0c04399
Wang, G. F., Cai, Z. Z., and Dou, X. C. (2021a). Colorimetric logic design for rapid and precise discrimination of nitrate-based improvised explosives. Cell. Rep. Phys. Sci. 2 (2), 100317. doi:10.1016/j.xcrp.2020.100317
Wang, J., Liu, J. L., Wang, M., Qiu, Y. L., Kong, J. M., and Zhang, X. J. (2021d). A host guest interaction enhanced polymerization amplification for electrochemical detection of cocaine. Anal. Chim. Acta. 1184, 339041. doi:10.1016/j.aca.2021.339041
Wang, J., Xu, H., Luo, L., Li, N. N., Qiao, C. X., Wu, J. F., et al. (2023a). Rapid detection of whole active ricin using a surface-enhanced Raman scattering-based sandwich immunoassay. J. RAMAN Spectrosc. 54 (2), 137–149. doi:10.1002/jrs.6464
Wang, J. J., Wu, Y., Wu, Q. H., Li, L., Wang, Y., and Yang, H. (2020f). Highly sensitive detection of melamine in milk samples based on N-methylmesoporphyrin IX/G-quadruplex structure. Microchem. J. 155, 104751. doi:10.1016/j.microc.2020.104751
Wang, L. J., Zhou, H., Hu, H. X., Wang, Q., and Chen, X. G. (2022c). Regulation mechanism of ssDNA aptamer in nanozymes and application of nanozyme-based aptasensors in food safety. FOODS 11 (4), 544. doi:10.3390/foods11040544
Wang, M., Shen, D. P., Zhu, Z. X., Ju, J. S., Wu, J., Zhu, Y., et al. (2020d). Dual-mode fluorescent development of latent fingerprints using NaYbF4:Tm upconversion nanomaterials. Mater Today Adv. 8, 100113. doi:10.1016/j.mtadv.2020.100113
Wang, M., Wang, C. M., and Ma, R. T. (2020a). Explosive detection and identification using X-ray fluorescence and thermal fingerprint of silica encapsulated nanoparticles. COLLOIDS SURFACES A-PHYSICOCHEMICAL Eng. ASPECTS 601, 125027. doi:10.1016/j.colsurfa.2020.125027
Wang, N., Gao, J., Enjing, T., Yu, W., Li, H., Zhang, J., et al. (2022e). Rapid Russula senecis identification assays using loop-mediated isothermal amplification based on real-time fluorescence and visualization. Appl. Microbiol. Biotechnol. 106 (3), 1227–1239. doi:10.1007/s00253-022-11774-9
Wang, S., Peng, T. H., Li, S. K., Wang, L. L., Zhang, L., Yin, Z. W., et al. (2022a). Natural interface-mediated self-assembly of graphene-isolated-nanocrystals for plasmonic arrays construction and personalized information acquisition. Nano Res. 15 (10), 9327–9333. doi:10.1007/s12274-022-4602-1
Wang, X., Liao, T., Wang, H. Y., Hao, H. X., Yang, Q. L., Zhou, H., et al. (2022b). Novel organic-inorganic hybrid polystyrene nanoparticles with trichromatic luminescence for the detection of latent fingerprints. Int. J. Anal. Chem. 2022, 1–8. doi:10.1155/2022/2230360
Wang, Y., Li, Z., Lin, H., Siddanakoppalu, P. N., Zhou, J., Chen, G., et al. (2019). Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food control. 106, 106714. doi:10.1016/j.foodcont.2019.106714
Wang, Y., Teng, X. Y., Cao, J. Y., Fan, Y. L., Liu, X. L., Guo, X. Y., et al. (2022f). Detection of 3,4-methylene dioxy amphetamine in urine by magnetically improved surface-enhanced Raman scattering sensing strategy. BIOSENSORS-BASEL. 12 (9), 711. doi:10.3390/bios12090711
Wang, Y. P., Ju, W., Chen, J. J., Liu, Z. Y., and Wang, J. S. (2020e). One-Step synthesis of solid-state photoluminescent carbon nanodots from grains for latent fingerprint detection. ChemistrySelect 5 (29), 8915–8923. doi:10.1002/slct.202000712
Wang, Z., Hu, S., Bao, H., Xing, K., Liu, J., Xia, J., et al. (2021b). Immunochromatographic assay based on time-resolved fluorescent nanobeads for the rapid detection of sulfamethazine in egg, honey, and pork. J. Sci. Food Agric. 101 (2), 684–692. doi:10.1002/jsfa.10681
Wang, Z., Wu, X., Liu, L., Xu, L., Kuang, H., and Xu, C. (2020b). Rapid and sensitive detection of diclazuril in chicken samples using a gold nanoparticle-based lateral-flow strip. Food Chem. 312, 126116. doi:10.1016/j.foodchem.2019.126116
Wang, Z. G., Chen, R. P., Hou, Y., Qin, Y. K., Li, S., Yang, S. P., et al. (2022d). DNA hydrogels combined with microfluidic chips for melamine detection. Anal. Chim. Acta. 1228, 340312. doi:10.1016/j.aca.2022.340312
Warning, L. A., Miandashti, A. R., McCarthy, L. A., Zhang, Q. F., Landes, C. F., and Link, S. (2021). Nanophotonic approaches for chirality sensing. ACS Nano 15 (10), 15538–15566. doi:10.1021/acsnano.1c04992
Weetall, H. H. (1996). Biosensor technology what? Where? When? And why? Biosens. Bioelectron. 11 (1–2), i–iv. doi:10.1016/0956-5663(96)83729-8
Wei, S., and Cui, X. (2021). Synthesis of gold nanoparticles immobilized on fibrous nano-silica for latent fingerprints detection. J. Porous Mater. 28 (3), 751–762. doi:10.1007/s10934-020-01030-8
Wei, S. C., Li, Y. J., Liang, H. H., Yen, Y. T., Lin, Y. H., and Chang, H. T. (2022). Photoluminescent carbon nanomaterials for sensing of illicit drugs: focus. Anal. Sci. 38 (2), 247–260. doi:10.2116/analsci.21sar06
Wei, W. X., Xi, Z. Q., and Huang, Q. L. (2021). Fabrication of SERS-active Au@Au@Ag double shell nanoparticles for low-abundance pigment detection. Chin. J. Chem. Phys. 34 (2), 197–202. doi:10.1063/1674-0068/cjcp2005062
Wen, Z. H., Hu, X. L., Yan, R. F., Wang, W. X., Meng, H., Song, Y., et al. (2023). A reliable upconversion nanoparticle-based immunochromatographic assay for the highly sensitive determination of olaquindox in fish muscle and water samples. Food Chem. 406, 135081. doi:10.1016/j.foodchem.2022.135081
Wille, S. M. R., and Elliott, S. (2021). The future of analytical and interpretative toxicology: where are we going and how do we get there? J. Anal. Toxicol. 45 (7), 619–632. doi:10.1093/jat/bkaa133
Wu, B. C., Castagnola, E., and Cui, X. T. (2023). Zwitterionic polymer coated and aptamer functionalized flexible micro-electrode arrays for in vivo cocaine sensing and electrophysiology. Micromachines (Basel). 14 (2), 323. doi:10.3390/mi14020323
Wu, H., Gao, Y., Yang, J., Vai, M., Du, M., and Pun, S. (2021a). Development of a photoelectric adjustment system with extended range for fluorescence immunochromatographic assay strip readers. IEEE Photonics J. 13 (3), 1–12. doi:10.1109/jphot.2021.3075900
Wu, J. F., Chen, P. P., Chen, J., Ye, X. X., Cao, S. R., Sun, C. Q., et al. (2022a). Integrated ratiometric fluorescence probe-based acoustofluidic platform for visual detection of anthrax biomarker. Biosens. Bioelectron. 214, 114538. doi:10.1016/j.bios.2022.114538
Wu, J. F., Zhu, Y. J., Liu, Y. L., Chen, J., Guo, L., and Xie, J. W. (2022b). A novel approach for on-site screening of organophosphorus nerve agents based on DTNB modified AgNPs using surface-enhanced Raman spectrometry. Anal. METHODS 14 (43), 4292–4299. doi:10.1039/d2ay01307j
Wu, K. H., Huang, W. C., Chang, S. C., Kao, C. H., and Shyu, R. H. (2019). Colloidal silver-based lateral flow immunoassay for rapid detection of melamine in milk and animal feed. Mater Chem. Phys. 231, 121–130. doi:10.1016/j.matchemphys.2019.04.035
Wu, K. H., Huang, W. C., Shyu, R. H., and Chang, S. C. (2020a). Silver nanoparticle-base lateral flow immunoassay for rapid detection of Staphylococcal enterotoxin B in milk and honey. J. Inorg. Biochem. 210, 111163. doi:10.1016/j.jinorgbio.2020.111163
Wu, L. A., Chen, Y. C., Pai, W. C., Hsu, Y. H., and Chen, Y. F. (2020d). “Plasmonic nanoparticles in agarose gel and filter paper-integrated microfluidic devices for SERS detection of molecules,” in Proc. SPIE 11257, plasmonics in biology and medicine XVII, 1, 1. doi:10.1117/12.2544360
Wu, Q., Yao, L., Qin, P. Z., Xu, J. G., Sun, X., Yao, B. B., et al. (2021b). Time-resolved fluorescent lateral flow strip for easy and rapid quality control of edible oil. Food Chem. 357, 129739. doi:10.1016/j.foodchem.2021.129739
Wu, Q. L., Ji, C., Zhang, L. L., Shi, Q. L., Wu, Y. G., and Tao, H. (2022d). A simple sensing platform based on a 1T@2H-MoS2/cMWCNTs composite modified electrode for ultrasensitive detection of illegal Sudan I dye in food samples. Anal. METHODS 14 (5), 549–559. doi:10.1039/d1ay01775f
Wu, T., Li, J. X., Zheng, S., Yu, Q., Qi, K. Z., Shao, Y., et al. (2022c). Magnetic nanotag-based colorimetric/SERS dual-readout immunochromatography for ultrasensitive detection of clenbuterol hydrochloride and ractopamine in food samples. BIOSENSORS-BASEL. 12 (9), 709. doi:10.3390/bios12090709
Wu, W. H., Sui, S. H., Li, J., Zong, L., Li, D., Xiao, Y. H., et al. (2020b). A fluorescent probe bearing two reactive groups discriminates between fluoride-containing G series and sulfur-containing V series nerve agents. ANALYST 145 (16), 5425–5429. doi:10.1039/d0an00878h
Wu, W. L., Yang, S. Y., Liu, J. L., Mi, J. F., Dou, L. N., Pan, Y. T., et al. (2020c). Progress in immunoassays for nitrofurans detection. Food Agric. Immunol. 31 (1), 907–926. doi:10.1080/09540105.2020.1786672
Wu, Z. F., Zhou, H., Han, Q. J., Lin, X. L., Han, D. X., and Li, X. (2020e). A cost-effective fluorescence biosensor for cocaine based on a “mix-and-detect” strategy. ANALYST. 145 (13), 4664–4670. doi:10.1039/d0an00675k
Xiao, J. X., Wei, N. N., Wu, S. M., Li, H. M., Yin, X. Y., Si, Y., et al. (2022). The simultaneous detection of multiple antibiotics in milk and pork based on an antibody chip biosensor. BIOSENSORS-BASEL. 12 (8), 578. doi:10.3390/bios12080578
Xie, H. Y., Chen, C. R., Lie, J. S., You, R. Y., Qian, W., Lin, S., et al. (2022c). Sensitive and selective detection of clenbuterol in meat samples by a graphene quantum dot fluorescent probe based on cationic-etherified starch. NANOMATERIALS 12 (4), 691. doi:10.3390/nano12040691
Xie, L. P., Zeng, H., Zhu, J. X., Zhang, Z. L., Sun, H. B., Xia, W., et al. (2022a). State of the art in flexible SERS sensors toward label-free and onsite detection: from design to applications. Nano Res. 15 (5), 4374–4394. doi:10.1007/s12274-021-4017-4
Xie, S. Z., Wang, H. R., Li, N. N., Liu, Y. L., Wu, J. F., Xu, Y. N., et al. (2022b). A gold coating nanoporous anodized alumina oxide membrane as the substrate for rapid surface enhanced Raman spectroscopy detection of conjugated cyanide in fingertip blood. Microchem. J. 183, 108107. doi:10.1016/j.microc.2022.108107
Xie, Y., Wu, S. H., Chen, Z. M., Jiang, J. Z., and Sun, J. J. (2022d). Rapid nanomolar detection of methamphetamine in biofluids via a reagentless electrochemical aptamer-based biosensor. Anal. Chim. Acta 1207, 339742. doi:10.1016/j.aca.2022.339742
Xie, Z. P., Yang, M. F., Luo, L., Lv, Y. P., Song, K. J., Liu, S. M., et al. (2020). Nanochannel sensor for sensitive and selective adamantanamine detection based on host-guest competition. Talanta. 219, 121213. doi:10.1016/j.talanta.2020.121213
Xiong, J. C., Qin, L. Q., Zhang, H. X., Zhang, S., He, S., Xu, Y. L., et al. (2022a). Sensitive and simultaneous detection of ractopamine and salbutamol using multiplex lateral flow immunoassay based on polyethyleneimine-mediated SiO2@QDs nanocomposites: comparison and application. Microchem. J. 181, 107730. doi:10.1016/j.microc.2022.107730
Xiong, J. C., Zhang, H. X., Qin, L. Q., Zhang, S., Cao, J. Y., and Jiang, H. Y. (2022b). Magnetic fluorescent quantum dots nanocomposites in food contaminants analysis: current challenges and opportunities. Int. J. Mol. Sci. 23 (8), 4088. doi:10.3390/ijms23084088
Xiu, L., Li, N., Runhao, Z., Penggang, Y., Chenmeng, Z., Yang, N., et al. (2021). Carbon-based SERS biosensor: from substrate design to sensing and bioapplication. NPG Asia Mater 13 (1), 8. doi:10.1038/s41427-020-00278-5
Xu, H., Zhang, H., Wang, C. Y., Chen, K., Liu, G. H., Tan, C. X., et al. (2021). A highly selective and sensitive “off-on” fluorescent probe for the detection of nerve agent mimic DCNP in solution and vapor phase. DYES PIGMENTS. 186, 109007. doi:10.1016/j.dyepig.2020.109007
Xu, H., Zhang, H., Zhao, L., Peng, C., Liu, G. H., and Cheng, T. Y. (2020). A naphthalimide-based fluorescent probe for the highly sensitive and selective detection of nerve agent mimic DCP in solution and vapor phase. NEW J. Chem. 44 (25), 10713–10718. doi:10.1039/d0nj00416b
Xu, S., Zhang, G., Fang, B., Xiong, Q., Duan, H., and Lai, W. (2019). Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize. ACS Appl. Mater Interfaces 11 (34), 31283–31290. doi:10.1021/acsami.9b08789
Xu, X. Q., Wang, W. Q., Lu, L., Zhang, J. Z., and Luo, J. (2022). Magnesium oxide nanotube as a promising material for detection of methamphetamine drug: theoretical study. J. Mol. Model. 28 (6), 150. doi:10.1007/s00894-022-05151-6
Xue, M. J., Wei, X. Z., Feng, W., Xing, Z. F., Liu, S. L., and Song, Q. H. (2021). Sensitive and selective detections of mustard gas and its analogues by 4-mercaptocoumarins as fluorescent chemosensors in both solutions and gas phase. J. Hazard Mater 15, 416. doi:10.1016/j.jhazmat.2021.125789
Yan, K., Wang, L. C., Zhu, Z. H., Duan, S. Q., Hua, Z. D., Xu, P., et al. (2023). Cucurbituril-protected dual-readout gold nanoclusters for sensitive fentanyl detection. ANALYST. 148 (6), 1253–1258. doi:10.1039/d2an01748b
Yan, Y., Zhang, J., Yi, S., Liu, L., and Huang, C. (2021). Lighting up forensic science by aggregation-induced emission: a review. Anal. Chim. Acta 1155, 238119. doi:10.1016/j.aca.2020.11.051
Yan, Y. B., Jiang, L., Zhang, S., Shen, X. T., and Huang, C. X. (2022). Specific “light-up” sensor made easy: an aggregation induced emission monomer for molecular imprinting. Biosens. Bioelectron. 205, 114113. doi:10.1016/j.bios.2022.114113
Yáñez-Sedeño, P., Agüí, L., Campuzano, S., and Pingarrón, J. M. (2019). What electrochemical biosensors can do for forensic science? Unique features and applications. Biosens. (Basel). 9 (4), 127. doi:10.3390/bios9040127
Yang, F. W., Wang, C., Yu, H., Guo, Y. H., Cheng, Y. L., Yao, W. R., et al. (2022b). Establishment of the thin-layer chromatography-surface-enhanced Raman spectroscopy and chemometrics method for simultaneous identification of eleven illegal drugs in anti-rheumatic health food. Food Biosci. 49, 101842. doi:10.1016/j.fbio.2022.101842
Yang, G., Zhang, J., Gu, L., Tang, Y., Zhang, X., Huang, X., et al. (2023a). Ratiometric fluorescence immunoassay based on carbon quantum dots for sensitive detection of malachite green in fish. Biosens. (Basel). 13 (1), 38. doi:10.3390/bios13010038
Yang, H., Gun, X. Y., Pang, G. H., Zheng, Z. X., Li, C. B., Yang, C., et al. (2021b). Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection. Opt. Express 29 (11), 16904–16913. doi:10.1364/oe.423789
Yang, H. W., Lu, F. N., Zhan, X. X., Tian, M. C., Yuan, Z. Q., and Lu, C. (2020b). A Eu3+ - inspired fluorescent carbon nanodot probe for the sensitive visualization of anthrax biomarker by integrating EDTA chelation. Talanta 208, 120368. doi:10.1016/j.talanta.2019.120368
Yang, J., He, D. T., Zhang, N., and Hu, C. G. (2022d). Disposable carbon nanotube-based antifouling electrochemical sensors for detection of morphine in unprocessed coffee and milk. J. Electroanal. Chem. 905, 115997. doi:10.1016/j.jelechem.2021.115997
Yang, L., Ren, Z., Zhang, M., Song, Y., Li, P., Qiu, Y., et al. (2021a). Three-dimensional porous SERS powder for sensitive liquid and gas detections fabricated by engineering dense “hot spots” on silica aerogel. Nanoscale Adv. 3 (4), 1012–1018. doi:10.1039/d0na00849d
Yang, W. Y., Ou, Q. H., Li, C. Y., Cheng, M. M., Li, W. J., and Liu, Y. K. (2022a). Ultrasensitive flower-like TiO2/Ag substrate for SERS detection of pigments and melamine. RSC Adv. 12 (12), 6958–6965. doi:10.1039/d1ra08128d
Yang, X. X., Guo, Y. Z., Liang, S., Hou, S. Y., Chu, T. T., Ma, J. L., et al. (2020a). Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment. J. Mater Chem. B 8 (47), 10788–10796. doi:10.1039/d0tb00125b
Yang, Y. P., Sun, A. L., and Eslami, M. (2021c). A density functional theory study on detection of amphetamine drug by silicon carbide nanotubes. Phys. E-LOW-DIMENSIONAL Syst. and NANOSTRUCTURES 125, 114411. doi:10.1016/j.physe.2020.114411
Yang, Z. C., Ma, C. Q., Gu, J., Wu, Y. M., Zhu, C., Li, L., et al. (2022c). SERS detection of benzoic acid in milk by using Ag-cof SERS substrate. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 267, 120534. doi:10.1016/j.saa.2021.120534
Yang, Z. C., Ma, C. Q., Gu, J., Wu, Y. M., Zhu, C., Li, L., et al. (2023b). Detection of melamine by using carboxyl-functionalized Ag-COF as a novel SERS substrate. Food Chem., 401. doi:10.1016/j.foodchem.2022.134078
Yao, H. F., Dong, X. X., Xiong, H., Liu, J. W., Zhou, J., and Ye, Y. (2022a). Functional cotton fabric-based TLC-SERS matrix for rapid and sensitive detection of mixed dyes. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 280, 121464. doi:10.1016/j.saa.2022.121464
Yao, W. X., Wang, B. J., Wu, Y. Z., Wang, J. Y., Xu, Z. S., Meng, F. W., et al. (2022b). Rapid determination of methamphetamine and cocaine in saliva by portable surface plasmon resonance (SPR). Anal. Lett. 55 (18), 2944–2953. doi:10.1080/00032719.2022.2080839
Yao, W. Y., Shi, J., Ling, J., Guo, Y. D., Ding, C. S., and Ding, Y. J. (2020). SiC-functionalized fluorescent aptasensor for determination of Proteus mirabilis. Microchim. ACTA 187 (7), 406. doi:10.1007/s00604-020-04378-5
Ye, J. F., Wang, S., Zhang, Y. J., Li, B. Y., Lu, M. J., Qi, X. H., et al. (2021). Surface-enhanced shifted excitation Raman difference spectroscopy for trace detection of fentanyl in beverages. Appl. Opt. 60 (8), 2354–2361. doi:10.1364/ao.418579
Ye, Z. L., Yao, H. F., Zhang, Y., Su, A. L., Sun, D., Ye, Y., et al. (2023). Pretreatment-free, on-site separation and sensitive identification of methamphetamine in biological specimens by SERS-active hydrogel microbeads. Anal. Chim. Acta 1263, 341285. doi:10.1016/j.aca.2023.341285
Yeasmin, S., Ammanath, G., Onder, A., Yan, E. V. L., Yildiz, U. H., Palaniappan, A., et al. (2022). Current trends and challenges in point-of-care urinalysis of biomarkers in trace amounts. TRAC-TRENDS Anal. Chem. 157, 116786. doi:10.1016/j.trac.2022.116786
Yen, Y. T., Chang, Y. J., Tseng, Y. T., Chen, C. Y., Liu, Y. L., and Chang, H. T. (2022a). Screening of synthetic cannabinoids in herbal mixtures using 1-dodecanethiol-gold nanoclusters. SENSORS ACTUATORS B-CHEMICAL 353, 131151. doi:10.1016/j.snb.2021.131151
Yen, Y. T., Lin, Y. S., Chang, Y. J., Li, M. T., Chyueh, S. C., and Chang, H. T. (2022b). Nanomaterial-based sensor arrays with deep learning for screening of illicit drugs. Adv. Mater Technol. 7 (11). doi:10.1002/admt.202200243
Yen, Y. T., Lin, Y. S., Chen, T. H., Chyueh, S. C., and Chang, H. T. (2020). A carbon-dot sensing probe for screening of date rape drugs: nitro-containing benzodiazepines. SENSORS ACTUATORS B-CHEMICAL 305, 127441. doi:10.1016/j.snb.2019.127441
Yen, Y. T., Tseng, S. H., Deng-Ying, H., Tsai, Y. S., Li-Wen, L., Pei-Lin, C., et al. (2022c). Identification of a novel norketamine precursor from seized powders: 2-(2-chlorophenyl)-2-nitrocyclohexanone. Forensic Sci. Int. (Online) 333, 111241. doi:10.1016/j.forsciint.2022.111241
Yi, K. Y., and Zhang, L. (2021). Designed Eu(III)-functionalized nanoscale MOF probe based on fluorescence resonance energy transfer for the reversible sensing of trace Malachite green. Food Chem. 354, 129584. doi:10.1016/j.foodchem.2021.129584
Yildirim, M. Ş., Akçan, R., Aras, S., Tamer, U., Evran, E., Taştekin, B., et al. (2023). Overcoming obstacles: analysis of blood and semen stains washed with different chemicals with ATR-FTIR. Forensic Sci. Int. 344, 111607. doi:10.1016/j.forsciint.2023.111607
Yoo, J., Kim, D., Yang, H., Lee, M., Kim, S. O., Ko, H. J., et al. (2022). Olfactory receptor-based CNT-FET sensor for the detection of DMMP as a simulant of sarin. SENSORS ACTUATORS B-CHEMICAL 354, 131188. doi:10.1016/j.snb.2021.131188
You, W., Zhao, Y. B., Xu, S. L., and Tian, S. S. (2021). Visualization of latent fingermarks on fabric using multi-metal deposition (MMD)—a preliminary study. Forensic Sci. Int. 327, 110981. doi:10.1016/j.forsciint.2021.110981
Yu, B. J., Liu, S. D., Xie, W. H., Pan, P. P., Zhou, P., Zou, Y. D., et al. (2022b). Versatile core-shell magnetic fluorescent mesoporous microspheres for multilevel latent fingerprints magneto-optic information recognition. INFOMAT 4 (5). doi:10.1002/inf2.12289
Yu, B. J., Liu, S. D., Zou, Y. D., Deng, Y. H., and Yue, Q. (2023a). Rough surface enhanced interfacial synthesis of core-shell magnetic fluorescent microspheres for enhanced latent fingerprint visualization. Adv. Mater Interfaces 10 (8). doi:10.1002/admi.202202479
Yu, J., Gai, Z. X., Cheng, J. Y., Tian, F., Wei, W., Li, Y., et al. (2023c). Construction of beta-cyclodextrin modified holographic sensor for the determination of ibuprofen in plasma and urine. SENSORS ACTUATORS B-CHEMICAL 385, 133650. doi:10.1016/j.snb.2023.133650
Yu, J., Wu, J. E., Yang, H., Li, P., Liu, J., Wang, M., et al. (2022c). Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic/-philic microporous platform. ACS Appl. Mater Interfaces 14 (38), 43877–43885. doi:10.1021/acsami.2c10381
Yu, M. D., Chang, Q., Zhang, L. L., Huang, Z. H., Song, C. X., Chen, Y., et al. (2022a). Ultra-sensitive detecting OPs-isocarbophos using photoinduced regeneration of aptamer-based electrochemical sensors. Electroanalysis 34 (6), 995–1000. doi:10.1002/elan.202100222
Yu, Y., He, Z., Lee, A. A. M., Gao, J., Tan, S. C. L., Goh, W. P., et al. (2023b). Electrochemiluminescence drug detection with nanoparticle-encapsulated luminophore on screen-printed electrodes. Mater Today Chem. 29, 101442. doi:10.1016/j.mtchem.2023.101442
Yuan, C. J., Li, M., Wang, M., Zhang, X. M., Yin, Z. H., Song, K. B., et al. (2020). Sensitive development of latent fingerprints using Rhodamine B-diatomaceous earth composites and principle of efficient image enhancement behind their fluorescence characteristics. Chem. Eng. J. 383, 123076. doi:10.1016/j.cej.2019.123076
Yuan, C. J., Wang, M., Li, M., Sun, P. R., Gao, R. X., and Tang, J. H. (2022a). Construction, mechanism, and forensic application of green-light- excited fluorescent carbon dots/diatomite composites. ACS Sustain Chem. Eng. 10, 14294–14308. doi:10.1021/acssuschemeng.2c04516
Yuan, Y. B., Chen, N., Wang, L. Y., Zhang, X. D., Chen, H., and Ma, P. (2022b). Rapid detection of illegally added nifedipine in Chinese traditional patent medicine by surface-enhanced Raman spectroscopy. Anal. Sci. 38 (2), 359–368. doi:10.2116/analsci.21p148
Zamani, R., and Yamini, Y. (2023). On-Chip electromembrane surrounded solid phase microextraction for determination of tricyclic antidepressants from biological fluids using poly(3,4-ethylenedioxythiophene)—graphene oxide nanocomposite as a fiber coating. Biosens. (Basel). 13 (1), 139. doi:10.3390/bios13010139
Zamanian, J., Khoshbin, Z., Hosseinzadeh, H., Danesh, N. M., Abdolabadi, A. K., Abnous, K., et al. (2022). An ultrasensitive detection platform for cocaine: aptasensing strategy in capillary tube. Front. Chem. 10, 996358. doi:10.3389/fchem.2022.996358
Zanfrognini, B., Pigani, L., and Zanardi, C. (2020). Recent advances in the direct electrochemical detection of drugs of abuse. J. SOLID STATE Electrochem. 24 (11–12), 2603–2616. doi:10.1007/s10008-020-04686-z
Zhang, B., Hou, X., and Wang, A. X. (2021e). “Point-of-Care SERS sensing of illicit drug residue using in-situ growth silver nanoparticles on diatomaceous photonic crystals,” in 2021 conference on lasers and electro-optics, CLEO 2021 - proceedings.
Zhang, B. X., Hou, X. W., Zhen, C., and Wang, A. X. (2021d). Sub-part-per-billion level sensing of fentanyl residues from wastewater using portable surface-enhanced Raman scattering sensing. BIOSENSORS-BASEL. 11 (10), 370. doi:10.3390/bios11100370
Zhang, C., Fan, Z. N., Zhan, H., Zhou, H., Ma, R. L., and Fan, L. J. (2021c). Fluorescent cationic conjugated polymer-based adaptive developing strategy for both sebaceous and blood fingerprints. ACS Appl. Mater Interfaces 13 (23), 27419–27429. doi:10.1021/acsami.1c04741
Zhang, C., Yu, X. X., Shi, X. M., Han, Y. F., Guo, Z. M., and Liu, Y. (2020d). Development of carbon quantum dot-labeled antibody fluorescence immunoassays for the detection of morphine in hot pot soup base. Food Anal. Methods 13 (5), 1042–1049. doi:10.1007/s12161-020-01700-y
Zhang, D. J., You, H. J., Zhang, L. L., and Fang, J. X. (2020g). Facile surface modification of mesoporous Au nanoparticles for highly sensitive SERS detection. Anal. Chem. 92 (23), 15379–15387. doi:10.1021/acs.analchem.0c02781
Zhang, G. H., Zou, X. Y., Li, H., and He, Y. (2021a). Visual colorimetric detection of triacetone triperoxide based on a Fe(ii)-promoted thermal decomposition process. ANALYST. 146 (20), 6187–6192. doi:10.1039/d1an01480c
Zhang, J., Hu, S., Du, Y., Cao, D., Wang, G. R., and Yuan, Z. Q. (2020b). Improved food additive analysis by ever-increasing nanotechnology. J. Food Drug Anal. 28 (4), 623–641. doi:10.38212/2224-6614.1152
Zhang, M., Li, M., Zhao, Y., Xu, N., Peng, L., Wang, Y., et al. (2021b). Novel monoclonal antibody-sandwich immunochromatographic assay based on Fe3O4/Au nanoparticles for rapid detection of fish allergen parvalbumin. Food Res. Int. 142, 110102. doi:10.1016/j.foodres.2020.110102
Zhang, M., Yu, Q., Guo, J., Wu, B., and Kong, X. (2022a). Review of thin-layer chromatography tandem with surface-enhanced Raman spectroscopy for detection of analytes in mixture samples. Biosens. (Basel). 12 (11), 937. doi:10.3390/bios12110937
Zhang, R. L., Ren, Y. M., Zhang, Q. Y., Huang, W. X., Bai, H. P., and Zeng, X. F. (2022f). Water-soluble pillar[5]arene-modified graphdiyne functional material and its application towards ultrasensitive and robust electrochemical methylamphetamine determination. NEW J. Chem. 46 (43), 20909–20917. doi:10.1039/d2nj03668a
Zhang, S. W., Sun, Y. Y., Sun, Y. M., Wang, H., Li, Z. F., and Xu, Z. L. (2020c). Visual upconversion nanoparticle-based immunochromatographic assay for the semi-quantitative detection of sibutramine. Anal. Bioanal. Chem. 412 (29), 8135–8144. doi:10.1007/s00216-020-02944-7
Zhang, T., Wu, L., Pei, J., Li, X., Li, H., and Inscore, F. (2022b). Part-per-billion level chemical sensing with a gold-based SERS-active substrate. Sensors 22 (5), 1778. doi:10.3390/s22051778
Zhang, T. S., Hu, X. Y., Zu, B. Y., and Dou, X. C. (2022c). A march to shape optical artificial olfactory system toward ultrasensitive detection of improvised explosives. Adv. Photonics Res. 3 (7). doi:10.1002/adpr.202200006
Zhang, T. T., Pei, J. C., Li, X. F., Li, H. W., and Inscore, F. (2022g). A surface-enhanced Raman sensor for trace identification and analysis of high-priority drugs of abuse with portable and handheld Raman devices. J. RAMAN Spectrosc. 53 (9), 1494–1514. doi:10.1002/jrs.6410
Zhang, W. Q., Ling, J., Wen, D., Cheng, Z. J., Wang, S. P., and Ding, Y. J. (2022h). Simultaneous detection of acute myocardial infarction-related miR-199a and miR-499 based on a dual-emission CdTe fluorescent probe and T7 exonuclease-assisted signal amplification. SENSORS ACTUATORS B-CHEMICAL 371, 132484. doi:10.1016/j.snb.2022.132484
Zhang, X., Wang, J., Liang, J. H., Liu, Z. W., Shen, X., Liu, Y. J., et al. (2022e). A novel self-aggregated gold nanoparticles based on sensitive immunochromatographic assays for highly detection of opium poppy in herbal teas. Food Chem. 390, 133188. doi:10.1016/j.foodchem.2022.133188
Zhang, Y., Li, S., Peng, T., Zheng, P., Wang, Z., Ling, Z., et al. (2020e). One-step icELISA developed with novel antibody for rapid and specific detection of diclazuril residue in animal-origin foods. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 37 (10), 1633–1639. doi:10.1080/19440049.2020.1787527
Zhang, Y., Li, T. T., Zhang, Y. J., Sun, X. H., Liu, H. Y., Wang, Y. A., et al. (2022d). Acetylcholinesterase-capped mesoporous silica gated switches for selective detection of high-toxicity organophosphate compounds. Anal. Chim. Acta. 1207, 339708. doi:10.1016/j.aca.2022.339708
Zhang, Y., Liu, Q., Chong-Bo, M., Wang, Q., Yang, M., and Du, Y. (2020a). Point-of-care assay for drunken driving with Pd@Pt core-shell nanoparticles-decorated ploy(vinyl alcohol) aerogel assisted by portable pressure meter. Theranostics 10 (11), 5064–5073. doi:10.7150/thno.42601
Zhang, Y., and Yan, B. (2020). A novel cucurbit[7]uril anchored bis-functionalized metal-organic framework hybrid and its potential use in fluorescent analysis of illegal stimulants in saliva. SENSORS ACTUATORS B-CHEMICAL 324, 128656. doi:10.1016/j.snb.2020.128656
Zhao, F. F., Zhang, T. Y., Yang, Y., and Lü, C. L. (2020a). A facile synthesis of multifunctional carbon dots as fluorescence “turn on” and “turn off” probes for selective detection of Al3+ and 2,4,6-trinitrophenol. LUMINESCENCE. 35 (8), 1277–1285. doi:10.1002/bio.3889
Zhao, J. Y., Qin, M. L., You, J. W., Liu, K., Ding, L. P., Liu, T. H., et al. (2022a). Rapid and colorimetric evaluation of G-series nerve agents and simulants using the squaraine-ethanolamine adducts. DYES PIGMENTS. 197, 109870. doi:10.1016/j.dyepig.2021.109870
Zhao, L. Y., Yang, R. Q., Wei, Y., Guo, Y. J., Zhao, Q., Zhang, H. W., et al. (2022d). Rapid and sensitive SERS detection of opioids in solutions based on the solid chip Au-coated Si nano-cone array. SPECTROCHIMICA ACTA PART A-MOLECULAR Biomol. Spectrosc. 283, 121720. doi:10.1016/j.saa.2022.121720
Zhao, S. Q., Chen, X. J., Huang, J. W., Zhang, X. N., Sun, J. L., and Yang, L. (2022c). Point-of-care testing of methylamphetamine with a portable optical fiber immunosensor. Anal. Chim. Acta. 1192, 339345. doi:10.1016/j.aca.2021.339345
Zhao, Y., Jing, X. H., Zheng, F. J., Liu, Y. M., and Fan, Y. (2021). Surface-enhanced Raman scattering-active plasmonic metal nanoparticle-persistent luminescence material composite films for multiple illegal dye detection. Anal. Chem. 93 (25), 8945–8953. doi:10.1021/acs.analchem.1c01442
Zhao, Y. L., Chen, Q., Lv, J., Xu, M. M., Zhang, X., and Li, J. R. (2022b). Specific sensing of antibiotics with metal-organic frameworks based dual sensor system. Nano Res. 15 (7), 6430–6437. doi:10.1007/s12274-022-4306-6
Zhao, Z. X., Shen, J. W., and Wang, M. (2020b). Simultaneous imaging of latent fingerprint and quantification of nicotine residue by NaYF4:Yb/Tm upconversion nanoparticles. Nanotechnology 31 (14), 145504. doi:10.1088/1361-6528/ab647c
Zhou, C. Y., Ma, J., and Sun, D. W. (2023). Grouping illuminants by aggregation-induced emission (AIE) mechanisms for designing sensing platforms for food quality and safety inspection. Trends Food Sci. Technol. 134, 232–246. doi:10.1016/j.tifs.2023.03.002
Zhou, H. F., Wu, D. T., and Cai, W. R. (2022d). Carbon nanotubes coated with hybrid nanocarbon layers for electrochemical sensing of psychoactive drug. Electrochim Acta 430, 141001. doi:10.1016/j.electacta.2022.141001
Zhou, J. J., Gui, Y., Lv, X. Q., He, J. L., Xie, F., Li, J. J., et al. (2022c). Nanomaterial-based fluorescent biosensor for food safety analysis. BIOSENSORS-BASEL. 12 (12), 1072. doi:10.3390/bios12121072
Zhou, J. J., Lv, X. Q., Jia, J. L., Din, Z. U., Cai, S. Q., He, J. L., et al. (2022a). Nanomaterials-based electrochemiluminescence biosensors for food analysis: recent developments and future directions. BIOSENSORS-BASEL. 12 (11), 1046. doi:10.3390/bios12111046
Zhou, S., Kuang, H., and Liu, L. (2020). Development of an ic-ELISA and colloidal gold strip for the detection of the beta-blocker carazolol. Food Agric. Immunol. 31 (1), 217–230. doi:10.1080/09540105.2019.1710113
Zhou, S. Y., Xu, X. X., Wang, L., Guo, L. L., Liu, L. Q., Kuang, H., et al. (2021). A fluorescence based immunochromatographic sensor for monitoring chlorpheniramine and its comparison with a gold nanoparticle-based lateral-flow strip. ANALYST. 146 (11), 3589–3598. doi:10.1039/d1an00423a
Zhou, Y., Wang, T. T., Yan, L. T., Zhang, G. M., Zhang, Y., Zhang, C. H., et al. (2022b). A sensitive electrochemical analysis method of ractopamine based on Janus particles. Chin. J. Anal. Chem. 50 (3), 100056. doi:10.1016/j.cjac.2022.100056
Zhu, A. N., Xuan, T., Zhai, Y., Wu, Y. P., Guo, X. Y., Ying, Y., et al. (2021). Preparation of magnetic metal organic framework: a magnetically induced improvement effect for detection of parathion-methyl. SENSORS ACTUATORS B-CHEMICAL 339, 129909. doi:10.1016/j.snb.2021.129909
Zhu, C. Q., Li, X., Wang, X. X., Su, H. Y., Ma, C. F., Guo, X., et al. (2022b). Ultrasensitive methyl salicylate gas sensing determined by Pd-doped SnO2. Front. Mater Sci. 16 (4), 220625. doi:10.1007/s11706-022-0625-5
Zhu, Q. Q., Wang, W., Kong, W. G., Chao, X. K., Bi, Y. Y., and Li, Z. H. (2022c). Metal formate framework-assisted solid fluorescent material based on carbonized nanoparticles for the detection of latent fingerprints. Anal. Chim. Acta. 1209, 339864. doi:10.1016/j.aca.2022.339864
Zhu, W., Wen, B. Y., Jie, L. J., Tian, X. D., Yang, Z. L., Radjenovic, P. M., et al. (2020). Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer. Biosens. Bioelectron. 154, 112067. doi:10.1016/j.bios.2020.112067
Zhu, Y. J., He, J., Wang, Q. Y., Chen, A. D., Aa, J., and Wang, G. J. (2022a). Accurate biodetection of trace uranium by electrochemiluminescence and its application inin vivo toxicokinetic dynamic research. Biosens. Bioelectron. 215, 114489. doi:10.1016/j.bios.2022.114489
Zhuang, L., Gong, J., Ji, Y., Tian, P., Kong, F., Bai, H., et al. (2020). Lateral flow fluorescent immunoassay based on isothermal amplification for rapid quantitative detection of Salmonella spp. Analyst 145 (6), 2367–2377. doi:10.1039/c9an02011j
Zimmerman, N., Li, H. Z., Ellis, A., Hauryliuk, A., Robinson, E. S., Gu, P., et al. (2020). Improving correlations between land use and air pollutant concentrations using wavelet analysis: insights from a low-cost sensor network. Aerosol Air Qual. Res. 20 (2), 314–328. doi:10.4209/aaqr.2019.03.0124
Zinna, J., Lockwood, T. L. E., and Lieberman, M. (2020). Enzyme-based paper test for detection of lactose in illicit drugs. Anal. METHODS 12 (8), 1077–1084. doi:10.1039/c9ay02459j
Zou, F. Y., Fu, K. X., Jin, C., Li, M., Zhang, G. L., Zhang, R. L., et al. (2022b). Microwave-prepared surface imprinted magnetic nanoparticles based electrochemical sensor for adsorption and determination of ketamine in sewage. Anal. Chim. Acta 1217, 340025. doi:10.1016/j.aca.2022.340025
Zou, R., Yu, Y., Pan, H. R., Zhang, P. S., Cheng, F. M., Zhang, C. H., et al. (2022a). Cross-linking induced emission of polymer micelles for high-contrast visualization level 3 details of latent fingerprints. ACS Appl. Mater Interfaces 14 (14), 16746–16754. doi:10.1021/acsami.2c02563
Keywords: systematic review, combating crime, sensor (or biosensor), point-of-care detection, low-cost sensors, illicit drug detection, body fluid analysis, food safety analysis
Citation: Cozens AE, Johnson SD and Lee T-C (2025) A systematic review of sensors to combat crime and routes to further sensor development. Front. Chem. 13:1568867. doi: 10.3389/fchem.2025.1568867
Received: 30 January 2025; Accepted: 05 May 2025;
Published: 12 June 2025.
Edited by:
Tony D. James, University of Bath, United KingdomReviewed by:
Chusen Huang, Shanghai Normal University, ChinaShi Gang Liu, Hunan Agricultural University, China
Copyright © 2025 Cozens, Johnson and Lee. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Alice E. Cozens, dWN0emFlY0B1Y2wuYWMudWs=Tung-Chun Lee, dHVuZ2NodW4ubGVlQHVjbC5hYy51aw==