Impact Factor 2.638 | CiteScore 2.3
More on impact ›

Original Research ARTICLE

Front. Phys., 23 October 2020 | https://doi.org/10.3389/fphy.2020.00309

On the (k,s)-Hilfer-Prabhakar Fractional Derivative With Applications to Mathematical Physics

  • 1Department of Mathematics, University of Sargodha, Sargodha, Pakistan
  • 2Department of Mathematics, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
  • 3Department of Mathematics, College of Arts and Sciences, Prince Sattam Bin Abdulaziz University, Wadi Aldawaser, Saudi Arabia
  • 4Department of Mathematics, University of Rajasthan, Jaipur, India

In this paper we introduce the (k, s)-Hilfer-Prabhakar fractional derivative and discuss its properties. We find the generalized Laplace transform of this newly proposed operator. As an application, we develop the generalized fractional model of the free-electron laser equation, the generalized time-fractional heat equation, and the generalized fractional kinetic equation using the (k, s)-Hilfer-Prabhakar derivative.

1. Introduction

Fractional calculus is the area of mathematical analysis that deals with the study and application of integrals and derivatives of arbitrary order. In recent decades, fractional calculus has become of increasing significance due to its applications in many fields of science and engineering [15]. The first application of fractional calculus was given by Abel [6] and includes the solution to the tautocrone problem. Fractional calculus also has applications in biophysics, wave theory, polymers, quantum mechanics, continuum mechanics, field theory, Lie theory, group theory, spectroscopy, and other scientific areas [79]. Although this calculus has a long history, over the past few decades it has attracted greater attention because of the fascinating results obtained when it is used to model certain real-world problems [1013]. What makes fractional calculus special is that there are numerous types of fractional operators, so any scientist modeling real-world phenomena can choose the operator that fits their purposes the best. Each classical fractional derivative is usually defined in terms of a specific integral. Among the most well-known concepts of fractional derivatives are the Riemann-Liouville, Caputo, Grünwald-Letnikov, and Hadamard derivatives [10, 14, 15], whose formulations involve single-kernel integrals and which are used to investigate, for example, memory effect problems [16].

The Riemann-Liouville fractional derivative is remarkable, but it has some drawbacks when used to model physical phenomena because of its improper physical conditions. Caputo's great contribution was to develop a concept of fractional derivative appropriate for physical conditions [17]. A number of other families of fractional operators have been established, such as the Liouville, Erdlyi-Kober, Hadamard, Grünwald-Letnikov, Hilfer, Hilfer-Prabhakar, and k-Hilfer-Prabhakar operators, to mention just a few [10, 1820]. Because there are so many concepts of fractional operator, it has become necessary to define generic fractional operators, of which the classical ones are particular cases. One class of extensions of Riemann-Liouville fractional operators comprises the so-called k-Prabhakar integral operators, which can be found in [21]. Inspired by the definitions of k-Prabhakar integral operators and k-Hilfer-Prabhakar derivatives [20], the authors introduced the (k, s)-Hilfer fractional derivative, which unifies a large class of fractional operators [19, 20]; [Samraiz et al., accepted].

In recent years, the generalization of integral and differential operators has become an important subject of research in fractional calculus [9, 20, 2228]. Different special functions, including the Gauss hypergeometric function, Mittag-Leffler-style functions, the Wright function, Meijer's G function, and Fox's H function, appear in the kernels of several generalizations of the integral operators. R. Hilfer introduced the Hilfer fractional derivative in [9], which is a generalization of the Riemann-Liouville and Caputo fractional derivatives.The Prabhakar integral and derivative operators are obtained from the Riemann-Liouville integral operator by extending its kernel to involve the three-parameter Mittag-Leffler function [19].

This paper is motivated by the rich applications of fractional differential equations (FDEs) in physics, economics, engineering, and many other branches of science [8, 10, 13, 17]. Since no general method exists that can be used to analytically solve every FDE, one of the most pressing and challenging tasks is to develop suitable methods for finding analytical solutions to certain classes of FDEs [2931]. Researchers have become interested in fractional interpretations of the classical integral transforms, i.e., Laplace and Fourier transforms [3234], in the past few years. It can be shown that integral transformations such as the Laplace, Fourier, generalized Laplace, and ρ-Laplace transforms are useful methods for obtaining analytical solutions to some classes of FDEs. In this framework, we use a generalized Laplace transform to obtain analytical solutions to certain classes of FDEs that contain (k, s)-Hilfer-Prabhakar fractional derivatives. Given the wide range of fractional operators available in the literature, it can be difficult to choose the most suitable approach for a given problem. It is therefore essential to consider generalizations of classical fractional operators to aid in choosing an appropriate operator.

Diaz et al. [35] defined k-gamma and k-beta functions as follows.

DEFINITION 1.1. The k-gamma function is a generalization of the classical Γ function given by

Γk(θ)=limnn!kn(nk)θk-1(θ)n,k,     k>0, Re(θ)>0,

where (θ)n,k = θ(θ + k)(θ + 2k) ⋯ (θ + (n − 1)k) for n ≥ 1 is called the Pochhammer k symbol. The integral representation is

Γk(θ)=0xθ-1e-xkkdx,     Re(θ)>0.

Clearly, Γ(θ)=limk1Γk(θ) and Γk(θ)=kθk-1Γ(θk).

DEFINITION 1.2. For Re(θ) > 0, k > 0, and Re(ζ) > 0, the k-beta function is given by

Bk(θ,ζ)=1k01τθk-1(1-τ)ζk-1dτ.

The functions Γk and Bk are related by an identity

Bk(θ,ζ)=Γk(θ)Γk(ζ)Γk(θ+ζ).

The k-Mittag-Leffler function given in [36] is defined as follows.

DEFINITION 1.3. Let nN, k ∈ ℝ+, μ, ρ, γ ∈ ℂ, Re(ρ) > 0, and Re(μ) > 0. Then the k-Mittag-Leffler function is defined by

Ek,ρ,μγ(θ)=n=0(γ)n,kθnΓk(ρn+μ)n!.

The modified (k, s)-fractional integral operator involving the k-Mittag-Leffler function given in [Samraiz et al., accepted] is defined as follows.

DEFINITION 1.4. Let s ∈ ℝ\{−1}, k ∈ ℝ+, μ, ρ, ω, γ ∈ ℂ, Re(ρ) > 0, Re(γ) > 0, Re(μ) > 0, and Φ ∈ L1[0, β]. Then the modified (k, s)-fractional integral operator involving the k-Mittag-Leffler function is given by

(𝔍ks0+;ρ,μω,γΦ)(θ)=(s+1)1μkk0θ(θs+1ζs+1)μk1ζsEk,ρ,μγ(ω(θs+1ζs+1)ρk)Φ(ζ)dζ.    (1.1)

DEFINITION 1.5 ([Samraiz et al., accepted]). Let s ∈ ℝ\{−1}, k ∈ ℝ+, μ, ρ, ω, γ ∈ ℂ, Re(ρ) > 0, Re(μ) > 0, n=[μk]+1, and Φ ∈ L1[0, β]. Then the (k, s)-Prabhakar fractional derivative operator with the k-Mittag-Leffler function as its kernel is given by

(𝔇ks0+;ρ,μω,γΦ)(θ)=(1θsddθ)nkn(𝔍ks0+;ρ,nkμω,γΦ)(θ).    (1.2)

DEFINITION 1.6 ([Samraiz et al., accepted]). Let s ∈ ℝ\{−1}, k ∈ ℝ+, μ, ρ, ω, γ ∈ ℂ, Re(ρ) > 0, Re(μ) > 0, n=[μk]+1, and Φ ∈ Cn[0, β] with 0 < θ < β < ∞. Then the regularized version of the (k, s)-Prabhakar derivative is

𝔇s,kc0+;ρ,μω,γΦ(θ)=kn𝔍ks0+;ρ,nkμω,γ(1θsddθ)nΦ(θ).    (1.3)

DEFINITION 1.7. Let gCn[α, β] such that g′(ζ) > 0 on [α, β]. Then

ACgn[α,β]={Φ:[α,β] with Φ[n-1]AC[α,β]},

where Φ[n-1]=(1g(ζ)ddζ)n-1Φ.

The generalized Laplace transform introduced by Jarad et al. [34] is presented in the following definition.

DEFINITION 1.8. Let Φ and g be real-valued functions on [α, ∞) such that g(ζ) is continuous and g′(ζ) > 0 on [α, ∞). The generalized Laplace transform of Φ is

Lg{Φ(θ)}(u)=αe-u(g(θ)-g(α))Φ(θ)g(θ) dθ

for all values of u.

DEFINITION 1.9 ([34]). Let Φ and Ψ be two piecewise-continuous functions on each interval [0, T] that are of exponential order. The generalized convolution of Φ and Ψ is given by

(Φ*gΨ)(θ)=αθΦ(ζ)Ψ(g-1(g(θ)+g(α)-g(ζ)))g(ζ)dζ.

THEOREM 1.10 ([34]). Let ΦCgn-1[α,T] be such that Φ[1] is of g-exponential order. Let Φ[1] be a piecewise-continuous function on the interval [α, T]. Then the generalized Laplace transform of Φ[1](ζ) exists and

Lg{Φ[1](θ)}(u)=sLg{Φ(θ)}(u)-Φ(α).

PROPOSITION 1.11. Let s ∈ ℝ\{−1}, k ∈ ℝ+, μ, ρ, ω, γ ∈ ℂ, Re(ρ) > 0, Re(μ) > 0, and β > 0. Then the integral operator 𝔍ks0+;ρ,μω,γ is bounded on C[0, β], i.e.,

|(𝔍0+;ρ,μω,γksΦ)(θ)|GΦC[0,β],

where

ΦC[0,β]=max{|Φ|:0<x<β}

and

G=(s+1)-μk(βs+1)Re(μk)kn=0|(γ)n,kωn||Γk(ρn+μ)|n!(βs+1)Re(ρk)n[nRe(ρk)+Re(μk)].    (1.4)

THEOREM 1.12. Let s ∈ ℝ\{−1}, k ∈ ℝ+, μ, ρ, ω, γ ∈ ℂ, Re(ρ) > 0, Re(γ) > 0, and Re(μ) > 0. Let Φ ∈ L1[0, β] be a piecewise-continuous function on each interval [0, θ] that is of g(θ)-exponential order. Then

Lg{(𝔍0+;ρ,μω,γksΦ)(θ)}(u)=((s+1)(ku))-μk(1kω(ku)ρk)γkLg{Φ(θ)}(u).

THEOREM 1.13 ([Samraiz et al., accepted]). Let k ∈ ℝ+, s ∈ [0, ∞), μ, ρ, ω, γ ∈ ℂ, Re(ρ) > 0, Re(γ) > 0, Re(μ) > 0, and g(θ) = θs+1. Let ΦACgn[0,β] and 𝔍ks0+;ρ,nkmμω,γ Φ for m = 0, 1, 2, …, n − 1 be of g(θ)-exponential order. Then

Lg{(𝔇0+;ρ,μω,γksΦ)(θ)}(u)=(s+1)nkμk(ku)μk(1kω(ku)ρk)γkLg{Φ(t)}(u)     m=0n1knmunm1(𝔇0+;ρ,μ(nm)kω,γksΦ)(0+),

with |kω(ku)-ρk|<1.

THEOREM 1.14 ([Samraiz et al., accepted]). The generalized Laplace transform of the regularized version of the (k, s)-Prabhakar fractional derivative is

Lg{𝔇0+;ρ,μω,γs,kCΦ(θ)}(u)=(s+1)nkμk[(ku)μk(1kω(ku)ρk)γkLg{Φ(θ)}(u)m=0n1km+1(ku)μ(m+1)kk(1kω(ku)ρk)γk(Φ[m])(0+)],

with |kω(ku)-ρk|<1.

2. The (k,s)-Hilfer-Prabhakar Fractional Derivative and Generalized Laplace Transforms

In this section we introduce a new family of operators called the (k, s)-Hilfer-Prabhakar fractional derivative. The generalized Laplace transforms of these operators are also studied in this section.

DEFINITION 2.1. Let Φ ∈ C1[0, β], 0 < θ < β < ∞, s ∈ ℝ\{−1}, k, ρ > 0, ω, γ ∈ ℝ, μ ∈ (0, 1), ν ∈ [0, 1], and (Φ𝔍ks0+;ρ,(1ν)(kμ)ω,γ(1ν))(θ)AC1[0,β]. The (k, s)-Hilfer-Prabhakar derivative is defined as

𝔇0+;ρ,ωγ,μ,νksΦ(θ)=k(𝔍0+;ρ,ν(kμ)ω,γνks(1θsddθ)𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ)(θ).

Note that if we choose ν = 0 in the above definition, we get (1.2) corresponding to m = 1; and if we take ν = 1, we obtain (1.3) corresponding to m = 1.

THEOREM 2.2. For s ∈ ℝ\{−1}, k, ρ > 0, ω, γ ∈ ℝ, μ ∈ (0, 1), ν ∈ [0, 1], and Φ ∈ L1[0, β], the operator 𝔇ks0+;ρ,ωγ,μ,ν is bounded on C[0, β], i.e.,

𝔇ks0+;ρ,ωγ,μ,νΦ(θ)C1C2Φ[0,β],

where

C1=(s+1)-ν(k-μ)k(βs+1)Re(ν(k-μ)k)kn=0|(-γν)n,kωn||Γk(ρn+ν(k-μ))|n!(βs+1)Re(ρk)n[nRe(ρk)+Re(ν(k-μ)k)]    (2.1)

and

C2=(s+1)-(1-ν)(k-μ)-kk(βs+1)Re((1-ν)(k-μ)-kk)km=0|(γ(ν-1))m,kωm||Γk(ρm+(1-ν)(k-μ))|m!×(βs+1)Re(ρk)m[mRe(ρk)+Re((1-ν)(k-μ)k)].    (2.2)

PROOF Using the estimates in Proposition 1.11, we get

𝔇0+;ρ,ωγ,μ,νksΦ(θ)=k(𝔍0+;ρ,ν(kμ)ω,γνks(1θsddθ)(𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ)(θ)C1(1θsddθ)(𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ)(θ)=C1(𝔍0+;ρ,(1ν)(kμ)kω,γ(1ν)ksΦ)(θ)C1C2Φ[0,β],

where C1 and C2 are the constants defined by (2.1) and (2.2).

PROPOSITION 2.3. Let s ∈ ℝ\{−1}, k, ρ, λ > 0, ω, γ, σ ∈ ℝ, μ ∈ (0, 1), ν ∈ [0, 1], λ > μ + νkμν, and Φ ∈ L1[0, β]. Then

(𝔇ks0+;ρ,ωγ,μ,ν(𝔍ks0+;ρ,λω,σΦ))(θ)=(𝔍ks0+;ρ,λμω,σγΦ)(θ).

In particular,

(𝔇ks0+;ρ,ωγ,μ,ν(𝔍ks0+;ρ,μω,γΦ))(θ)=Φ(θ).

PROOF. By using Definition 2.1 and the semigroup property of the modified (k, s)-fractional integral operator with the k-Mittag-Leffler function, we obtain

(𝔇ks0+;ρ,ωγ,μ,ν(𝔍ks0+;ρ,λω,σΦ))(θ)=k(𝔍ks0+;ρ,ν(kμ)ω,γν(1θsddθ)𝔍ks0+;ρ,(1ν)(kμ)ω,γ(1ν)(𝔍ks0+;ρ,λω,σΦ))(θ)=k(𝔍ks0+;ρ,ν(kμ)ω,γν(1θsddθ)(𝔍ks0+;ρ,(1ν)(kμ)+λω,γ(1ν)+σΦ))(θ)=(𝔍ks0+;ρ,ν(kμ)ω,γν(𝔍ks0+;ρ,(1ν)(kμ)+λkω,γ(1ν)+σΦ))(θ)=(𝔍ks0+;ρ,λμω,σγΦ)(θ).

This completes the proof.

THEOREM 2.4. Let s ∈ ℝ\{−1}, k, ρ, λ > 0, ω, γ ∈ ℝ, μ ∈ (0, 1), ν ∈ [0, 1], λ > μ + νkμν, and Φ ∈ L1[0, β]. Then

(Jks0+λ(𝔇ks0+;ρ,ωγ,μ,νΦ))(θ)=(𝔍ks0+;ρ,λμω,γΦ)(θ).

PROOF. By using Definition 2.1 and Theorem 2 in [Samraiz et al., accepted], we get

(Jks0+λ(𝔇ks0+;ρ,ωγ,μ,νΦ))(θ)=k(Jks0+λ𝔍ks0+;ρ,ν(kμ)ω,γν(1θsddθ)𝔍ks0+;ρ,(1ν)(kμ)ω,γ(1ν)Φ)(θ)=k(𝔍ks0+;ρ,ν(kμ)+λω,γν(1θsddθ)𝔍ks0+;ρ,(1ν)(kμ)ω,γ(1ν)Φ)(θ)=(𝔍ks0+;ρ,ν(kμ)+λω,γν(𝔍ks0+;ρ,(1ν)(kμ)kω,γ(1ν)Φ))(θ)=(𝔍ks0+;ρ,λμω,γΦ)(θ),

and thus the result is proved.

THEOREM 2.5. The Laplace transform of the (k, s)-Hilfer-Prabhakar fractional derivative is

Lg{𝔇0+;ρ,ωγ,μ,νksΦ(θ)}(u)=(s+1)μkk(ku)μk(1kω(ku)ρk)γk     ×Lg{Φ(θ)}(u)k(s+1)ν(kμ)k(ku)ν(kμ)k     ×(1kω(ku)ρk)γνk𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ(0+).

PROOF. By using Definition 2.1, Theorem 1.12, and Theorem 1.10, we obtain

Lg{𝔇0+;ρ,ωγ,μ,νksΦ(θ)}(u)   =k(s+1)ν(kμ)k(ku)ν(kμ)k(1kω(ku)ρk)γνk          Lg{𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)[1]ksΦ(θ)}(u)   =k(s+1)ν(kμ)k(ku)ν(kμ)k(1kω(ku)ρk)γνk        ×[uLg{𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ(θ)}(u)𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ(0+)]   =(ku)(s+1)ν(kμ)k(ku)ν(kμ)k(1kω(ku)ρk)γνk              Lg{𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ(θ)}(u)         k(s+1)ν(kμ)k(ku)ν(kμ)k(1kω(ku)ρk)γνk𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ(0+)   =(ku)(s+1)ν(kμ)k(ku)ν(kμ)k(1kω(ku)ρk)γνk        ×[(s+1)(1ν)(kμ)k(ku)(1ν)(kμ)k(1kω(ku)ρk)γ(1ν)k           Lg{Φ(θ)}(u)]         k(s+1)ν(kμ)k(ku)ν(kμ)k(1kω(ku)ρk)γνk𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ(0+)   =(s+1)μkk(ku)μk(1kω(ku)ρk)γkLg{Φ(θ)}(u)            k(s+1)ν(kμ)k     ×(ku)ν(kμ)k(1kω(ku)ρk)γνk𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ(0+),

which proves the result.

3. Generalization of the Free-Electron Laser Equation

The integrodifferential free-electron laser equation describes the unsaturated behavior of the free-electron laser. Several attempts have been made to solve the generalized fractional integrodifferential free-electron laser equation in recent years. In this section, we develop a generalized fractional model of the free-electron laser equation that involves the novel (k, s)-Hilfer-Prabhakar derivative.

THEOREM 3.1. The solution of the Cauchy problem

𝔇0+;ρ,ωγ,μ,νksΦ(θ)=λ𝔍0+;ρ,μσ,ωksΦ(θ)+f(θ),    (3.1)
𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksΦ(0+)=C,     C0,    (3.2)

where θ ∈ (0, ∞), fL1[0, ∞), μ ∈ (0, 1), ν ∈ [0, 1], ω, λ ∈ ℝ, ρ > 0, and γ, σ ≥ 0, is given by

Φ(θ)=Cm=0λm(s+1)ν(kμ)+μkk(θs+1)ν(kμ)+μ(1+2m)k1                                      ×Ek,ρ,ν(kμ)+μ(1+2m)(γ+σ)mγ(ν1)(ω(θs+1)ρk)                 +m=0λm(s+1)2m(𝔍ksk,ρ,μ(1+2m)ω,(γ+σ)m+γf)(θ).

PROOF. By applying the generalized Laplace transform to both sides of (3.1) and using Theorems 2.5 and 1.11, we get

Lg{𝔇0+;ρ,ωγ,μ,νksΦ(θ)}(u)=λLg{𝔍0+;ρ,μσ,ωksΦ(θ)}(u)+Lg{f(θ)}(u),

which can also be written as

Lg{Φ(θ)}(u)=Ck(s+1)-ν(k-μ)k(ku)-ν(k-μ)k(1-kω(ku)ρk)γνk(s+1)μ-kk(ku)μk(1-kω(ku)-ρk)γk                              +Lg{f(θ)}(u)(s+1)μ-kk(ku)μk(1-kω(ku)-ρk)γk                              (1-λ(ku)-2μk(1-kω(ku)-ρk)-γ+σk)-1.

Using the binomial expansion gives

Lg{Φ(θ)}(u)=Ck(s+1)-ν(k-μ)k(ku)-ν(k-μ)k(1-kω(ku)ρk)γνk(s+1)μ-kk(ku)μk(1-kω(ku)-ρk)γk       +Lg{f(θ)}(u)(s+1)μ-kk(ku)μk(1-kω(ku)-ρk)γk            m=0λm(ku)-2μmk(1-kω(ku)-ρk)-(γ+σ)km=Ckm=0λm(s+1)-ν(k-μ)+μ-kk(ku)-ν(k-μ)+μ(1+2m)k          (1-kω(ku)-ρk)-(γ+σ)m-γ(ν-1)k     +m=0λm(s+1)-μ-kk(ku)-μ(1+2m)k          (1-kω(ku)-ρk)-γ+m(γ+σ)kLg{f(θ)}(u).

Applying the inverse Laplace transform, we obtain

Φ(θ)=Cm=0λm(s+1)-ν(k-μ)+μ-kk(θs+1)ν(k-μ)+μ(1+2m)k-1                    Ek,ρ,ν(k-μ)+μ(1+2m)(γ+σ)m-γ(ν-1)(ω(θs+1)ρk)                 +m=0λm(s+1)2m(𝔍ksk,ρ,μ(1+2m)ω,(γ+σ)m+γf)(θ),

hence the result.

REMARK 3.2. If s = 0, k = 1, γ = ν = 0, ρ = σ = 1, μ → 1, f(θ) = 0, ω = ir, and λ = −iΠp (with r, p ∈ ℝ), then above Cauchy problem reduces to the following free-electron laser equation:

ddθΦ(θ)=-ipΠ0θ(θ-t)eir(θ-t)Φ(t)dt,     Φ(0)=1.

COROLLARY 3.3. If we take s = 0 and k = 1, then we get the Cauchy problem given in [19]:

𝔇0+;ρ,ωγ,μ,νΦ(θ)=λ𝔍0+;ρ,μσ,ωΦ(θ)+f(θ),    (3.3)
𝔍0+;ρ,(1-ν)(k-μ)ω,-γ(1-ν)Φ(0+)=C,     C0,    (3.4)

where θ ∈ (0, ∞), fL1[0, ∞), μ ∈ (0, 1), ν ∈ [0, 1], ω, λ ∈ ℝ, ρ > 0, and γ, σ ≥ 0, and its solution is given by

Φ(θ)=Cm=0λm(θ)ν(1-μ)+μ(1+2m)-1Eρ,ν(1-μ)+μ(1+2m)(γ+σ)m-γ(ν-1)(ω(θ)ρ)                 +m=0λm(𝔍0+,ρ,μ(1+2m)ω,(γ+σ)m+γf)(θ).

4. The Time-Fractional Heat Equation

Lately, numerous papers have been devoted to mathematical analysis of variations of the time-fractional heat equation and its applications in mathematical physics and probability theory [see, for example, [37, 38] and the references therein]. This section focuses on the generalized time-fractional heat equation involving the (k, s)-Hilfer-Prabhakar derivative.

THEOREM 4.1. The solution of the Cauchy problem

𝔇0+;ρ,ωγ,μ,νksV(θ,ζ)=G2ζ2V(θ,ζ),     ζ>0,θ,    (4.1)
[𝔍ks0+;ρ,(1ν)(kμ)γ(1ν),ωV(θ,ζ)]ζ=0+=h(θ),    (4.2)
limθV(θ,ζ)=0,    (4.3)

where s ∈ [0, ∞), μ ∈ (0, 1), ν ∈ [0, 1], ω ∈ ℝ, G, k, ρ > 0, and γ ≥ 0, is given by

V(θ,ζ)=-+dp e-ipθh^(p)12Πm=0(-G)m(s+1)-(1-ν)(k-μ)-(μ-k)mk(ζs+1)μ(m+1)-ν(μ-k)k-1×Ek,ρ,μ(m+1)-ν(k-μ)γ(m+1-ν)(ω(ζs+1)ρk)p2mh^(p).

PROOF. Let V^(p,t)=F(ν)(p,ζ) denote the Fourier transform with respect to the space variable θ. Taking the Fourier transform of (4.1) and using (4.3), we obtain

𝔇0+;ρ,ωγ,μ,νksV^(p,ζ)=Gp2V^(p,ζ).

Now, applying the generalized Laplace transform to both sides of above equation, we get

Lg{𝔇0+;ρ,ωγ,μ,νksV^(p,ζ)}=Gp2Lg{V^(p,ζ)}(u)(s+1)μkk(ku)μk(1kω(ku)ρk)γkLg{V^(p,ζ)}(u)     k(s+1)ν(kμ)k(ku)ν(kμ)k(1kω(ku)ρk)γνk[𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksV^(p,ζ)]ζ=0+=Gp2Lg{V^(p,ζ)}(u),

which can be written as

Lg{V^(p,ζ)}(u)=k(s+1)-ν(k-μ)k(ku)-ν(k-μ)k(1-kω(ku)-ρk)γνkh^(p)(s+1)μ-kk(ku)μk(1-kω(ku)-ρk)γk+Gp2Lg{V^(p,ζ)}(u)=k(s+1)ν(μ-k)-(μ-k)k(ku)ν(μ-k)-μk(1-kω(ku)-ρk)γ(ν-1)kh^(p)     ×(1+Gp2(s+1)μ-kk(ku)-μk(1-kω(ku)-ρk)γk)-1=k(s+1)ν(μ-k)-(μ-k)k(ku)ν(μ-k)-μk(1-kω(ku)-ρk)γ(ν-1)kh^(p)     ×m=0(-G)m(s+1)(μ-k)mk(ku)μkm(1-kω(ku)-ρk)γkm=km=0(-G)m(s+1)(1-ν)(k-μ)+(k-μ)mk(ku)ν(μ-k)-μ(m+1)k                         ×(1-kω(ku)-ρk)-γ(m+1-ν)kh^(p).

Applying the inverse Laplace transform, we get

V^(p,ζ)=m=0(-G)m(s+1)(1-ν)(k-μ)+(k-μ)mk(ζs+1)μ(m+1)-ν(μ-k)k-1                              ×Ek,ρ,μ(m+1)-ν(k-μ)γ(m+1-ν)(ω(ζs+1)ρk)p2mh^(p).

Now, applying the inverse Fourier transform yields

V(θ,ζ)=-+dp e-ipθh^(p)12Πm=0(-G)m(s+1)-(1-ν)(k-μ)-(μ-k)mk(ζs+1)μ(m+1)-ν(μ-k)k-1×Ek,ρ,μ(m+1)-ν(k-μ)γ(m+1-ν)(ω(ζs+1)ρk)p2mh^(p).

REMARK 4.2. If s = 0, k = 1, γ = 0, and μ → 1, then the above Cauchy problem reduces to

θV(θ,ζ)=G2θ2V(θ,ζ)[V(θ,ζ)]ζ=0+=h(θ),     limθV(θ,ζ)=0,

which is the heat equation.

COROLLARY 4.3. If we take s = 0 and k = 1, we get the following Cauchy problem given in [19]:

𝔇0+;ρ,ωγ,μ,νV(θ,ζ)=G2θ2V(θ,ζ),     ζ>0, θ,
[𝔍0+;ρ,(1-ν)(1-μ)-γ(1-ν),ωV(θ,ζ)]ζ=0+=h(θ),
limθV(θ,ζ)=0,

where μ ∈ (0, 1), ν ∈ [0, 1], ω ∈ ℝ, R, ρ > 0, and γ ≥ 0, with solution given by

V(θ,ζ)=-+dp e-ipθh^(p)12Πm=0(-G)mζμ(m+1)-ν(μ-1)-1             ×Eρ,μ(m+1)-ν(μ-1)γ(m+1-ν)(ωζρ)p2mh^(p).

5. Generalization of the Fractional Kinetic Differintegral Equation

Fractional differential equations are important tools for developing mathematical models of numerous phenomena in fields such as physics, dynamic systems, control systems, and engineering. In mathematical modeling, kinetic equations describe the continuity of the motion of a substance and are basic equations of mathematical physics and the natural sciences. In this section, we consider an equation that generalizes kinetic equations. For related literature, we refer the reader to [3942].

THEOREM 5.1. Consider the Cauchy problem

aks𝔇0+;ρ,ωγ,μ,νN(t)-N0f(t)=bks𝔍0+;ρ,qω,σN(t),     fL1[0,),    (5.1)
𝔍0+;ρ,(1ν)(kμ)ω,γ(1ν)ksN(0)=d,     d0,    (5.2)

where s ∈ [0, ∞), ν ∈ [0, 1], ω ∈ ℂ, a, b ∈ ℝ (a ≠ 0), μ, ρ, q, k > 0, and γ, σ ≥ 0. The solution to the problem is

N(t)=dn=0(ba)n(s+1)ν(kμ)+(μk)(n+1)+qnk(ts+1)ν(kμ)+μ+(q+μ)nk1          Ek,ρ,ν(kμ)+μ+(q+μ)n(γ+σ)n+γ(1ν)(ω(ts+1)ρk)              +N0an=0(ba)n(s+1)n+1ks𝔍0+;ρ,(q+μ)n+μω,(γ+σ)n+γf(t).

PROOF. Applying the generalized Laplace transform to both sides of (5.1), we get

aLg{𝔇0+;ρ,ωγ,μ,νksN(t)}(u)N0Lg{f(t)}(u)=bLg{𝔍0+;ρ,qω,σksN(t)}(u).

Using Theorems 2.5 and 1.12, we get

a[(s+1)μkk(ku)μk(1kω(ku)ρk)γkLg{N(t)}(u)  k(s+1)ν(kμ)k(ku)ν(kμ)k     ×(1kω(ku)ρk)γνk𝔍ks0+;ρ,(1ν)(kμ)ω,γ(1ν)N(0+)]  N0Lg{f(t)}(u)  =b(s+1)μk(ku)μk(1kω(ku)ρk)σkLg{N(t)},

which can be written as

[a-b(s+1)-μ-k+qk(ku)-μ+qk(1-kω(ku)-ρk)-γ+σk(s+1)-μ-kk(ku)-μk(1-kω(ku)-ρk)-γk]Lg{N(t)}(u)=akd(s+1)-ν(k-μ)k(ku)-ν(k-μ)k(1-kω(ku)-ρk)γνk+N0Lg{f(t)}(u),
Lg{N(t)}(u)=akd[(s+1)-ν(k-μ)+(μ-k)k(ku)-ν(k-μ)+μk(1-kω(ku)-ρk)γ(ν-1)ka-b(s+1)-μ-k+qk(ku)-μ+qk(1-kω(ku)-ρk)-γ+σk]     +[(s+1)-μ-kk(ku)-μk(1-kω(ku)-ρk)-γka-b(s+1)-μ-k+qk(ku)-μ+qk(1-kω(ku)-ρk)-γ+σk]N0Lg{f(t)}(u).

Taking |ba(s+1)-μ-k+qk(ku)-μ+qk(1-kω(ku)-ρk)-γ+σk|<1 gives

Lg{N(t)}(u) =[kd(s+1)ν(kμ)+(μk)k(ku)ν(kμ)+μk(1kω(ku)ρk)γ(ν1)k      +(s+1)μkk(ku)μk(1kω(ku)ρk)γka1N0Lg{f(t)}(u)]     ×n=0(ba)n(s+1)(μk+q)nk(ku)(μ+q)nk      (1kω(ku)ρk)(γ+σ)nk =dkn=0(ba)n(s+1)ν(kμ)+(μk)(n+1)+qnk(ku)ν(kμ)+μ+(μ+q)nk      (1kω(ku)ρk)(γ+σ)n+γ(1ν)k   +N0an=0(ba)n(s+1)(μk)(n+1)+qnk(ku)μ+(μ+q)nk    (1kω(ku)ρk)(γ+σ)n+γk.

Applying the inverse Laplace transform, we get

N(t)=dn=0(ba)n(s+1)ν(kμ)+(μk)(n+1)+qnk(ts+1)ν(kμ)+μ+(q+μ)nk1Ek,ρ,ν(kμ)+μ+(q+μ)n(γ+σ)n+γ(1ν)(ω(ts+1)ρk)     +N0an=0(ba)n(s+1)n+1𝔍ks0+;ρ,(q+μ)n+μω,(γ+σ)n+γf(t),

which is the required result.

REMARK 5.2. If we take s = 0, k = 1, ν = γ = σ = 0, μ → 0, a = 1, and b = −cp, then we get the following fractional kinetic equation given in [39]:

N(t)-N0f(t)=-cpD0+pN(t),     N(0)=d,     d0,

where D0+p is the Riemann-Liouville fractional integral operator, defined as

D0+pN(t)=1Γ(p)0t(t-τ)p-1N(τ)dτ.

Here N(t) denotes the number density of a given species at time t, with N0 = N(0) being the number density of that species at time t = 0, c is a constant, and fL1[0; ∞).

COROLLARY 5.3. If we take s = 0 and ν = 0, then we get the following Cauchy problem given in [42]:

ak𝔇0+;ρ,ωγ,μN(t)N0f(t)=b𝔍k0+;ρ,qω,σN(t),     fL1[0,),                                 𝔍k0+;ρ,kμω,γN(0)=d,     d0,

where ω ∈ ℂ, a, b ∈ ℝ(a ≠ 0), μ, ρ, q, k > 0, and γ, σ ≥ 0. The solution to the problem is

N(t)=dn=0(ba)ntμ+(q+μ)nk1Ek,ρ,μ+(q+μ)n(γ+σ)n+γ(ω(t)ρk)           +N0an=0(ba)n𝔍k0+;ρ,(q+μ)n+μω,(γ+σ)n+γf(t).

6. Conclusion

A new generalized fractional derivative operator, referred to as the (k, s)-Hilfer-Prabhakar fractional derivative, is developed in this article. The generalized Laplace transform of the proposed operator is also studied. Potential applications of the proposed operator are discussed, which concern fractional models of the free-electron laser equation, heat equation, and kinetic equation that involve the new operator. The results in this article suggest that this novel operator can be used to solve various types of problems arising in mathematical physics and other fields.

Data Availability Statement

All datasets generated for this study are included in the article/supplementary material.

Author Contributions

MS, KN, and DK: Conceptualization. MS, ZP, GR, and KN: Writing original draft. KN and DK: Methodology. ZP, GR, and DK: Formal analysis. MS and GR: Validation. KN and DK: Revision and final check. All authors contributed to the article and approved the submitted version.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Kumar D, Singh J, Tanwar K, Baleanu D. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws. Int J Heat Mass Transfer. (2019) 138:1222–7. doi: 10.1016/j.ijheatmasstransfer.2019.04.094

CrossRef Full Text | Google Scholar

2. Kumar D, Singh J, Qurashi MA, Baleanu D. A new fractional SIRS-SI malaria disease model with application of vaccines, anti-malarial drugs, and spraying. Adv Differ Equat. (2019) 2019:278. doi: 10.1186/s13662-019-2199-9

CrossRef Full Text | Google Scholar

3. Kumar D, Singh J, Baleanu D. A new numerical algorithm for fractional Fitzhugh-Nagumo Equation arising in transmission of nerve impulses. Nonlinear Dyn. (2018) 91:307–17. doi: 10.1007/s11071-017-3870-x

CrossRef Full Text | Google Scholar

4. Kumar D, Singh J, Baleanu D. Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Physica A. (2018) 492:155–67. doi: 10.1016/j.physa.2017.10.002

CrossRef Full Text | Google Scholar

5. Singh J, Kumar D, Baleanu D. New aspects of fractional Biswas-Milovic model with Mittag-Leffler law. Math Model Nat Phenomena. (2019) 14:303. doi: 10.1051/mmnp/2018068

CrossRef Full Text | Google Scholar

6. Abel N. Solution de quelques problemes l'aide d'integrales definies. Mag Nat. (1823) 1:1–27.

Google Scholar

7. Herrmann R. Fractional Calculus: An Introduction for Physicists. 3rd revised ed. Singapore: World Scientific Publishing (2018).

Google Scholar

8. Hilfer R. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing (2000).

Google Scholar

9. Hilfer R. Threefold Introduction to Fractional Derivatives. Anomalous Transport: Foundations and Applications. Weinheim: Germany Publishing (2008).

Google Scholar

10. Kilbas A, Srivastava HM, Trujillo JJ. Theory and Application of Fractional Differential Equations. Amsterdam: North Holland Mathematics Studies (2006). p. 204.

Google Scholar

11. Lorenzoand CF, Hartley TT. Variable order and distributed order fractional operators. Nonlinear Dynam. (2002) 29:57–98. doi: 10.1023/A:1016586905654

CrossRef Full Text | Google Scholar

12. Magin RL. Fractional Calculus in Bioengineering. Redding, CA: House Publishers (2006).

Google Scholar

13. Podlubny I. Fractional Differential Equations. San Diego CA: Academic Press (1999).

Google Scholar

14. Oldham KB, Spanier J. The Fractional Calculus. New York, NY: Academic Press (1974).

Google Scholar

15. Baleanu D, Diethelm K, Scalas E, Trujillo JJ. Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. New Jersey, NJ: World Scientific Publishing (2012).

PubMed Abstract | Google Scholar

16. Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Singapore; London; Hong Kong: World Scientific (2010).

Google Scholar

17. Diethelm K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Berlin; Heidelberg: Springer (2010).

Google Scholar

18. Hilfer R, Luchko Y, Tomovski Z. Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives. Fract Calc Appl Anal. (2009) 12:299–318. Available online at: https://www.researchgate.net/publication/228746820_Operational_method_for_the_solution_of_fractional_differential_equations_with_generalized_Riemann-Liouville_fractional_derivatives

Google Scholar

19. Garra R, Goreno R, Polito F, Tomovski Z. Hilfer-Prabhakar derivative and some applications. Appl Math Comput. (2014) 242:576–89. doi: 10.1016/j.amc.2014.05.129

CrossRef Full Text | Google Scholar

20. Panchal SK, Pravinkumar VD, Khandagale AD. k-Hilfer-Prabhakar fractional derivatives and its applications. Indian J Math. (2017) 59:367–83. Available online at: http://www.amsallahabad.org/pdf/ijm593.pdf

Google Scholar

21. Dorrego GA. Generalized Riemann-Liouville fractional operators associated with a generalization of the Prabhakar integral operator. Prog Fract Differ Appl. (2016) 2:131–40. doi: 10.18576/pfda/020206

CrossRef Full Text | Google Scholar

22. Nisar KS, Rahman G, Baleanu D, Mubeen S, Arshad M. The (k, s)-fractional calculus of k-Mittag-Leffler function. Adv Differ Equat. (2017) 118:1–2. doi: 10.1186/s13662-017-1239-6

CrossRef Full Text | Google Scholar

23. Gaboury S, Tremblay R, Fugere B. Some relations involving a generalized fractional derivative operator. J Inequal Appl. (2013) 167:1–9. doi: 10.1186/1029-242X-2013-167

CrossRef Full Text | Google Scholar

24. Rahman G, Nisar KS, Mubeen S. A new extension of extended Caputo fractional derivative operator. Math Eng Sci Aerospace. (2020) 11:265–79.

Google Scholar

25. Bohner M, Rahman G, Mubeen S, Nisar KS. A further extension of the extended Riemann-Liouville fractional derivative operator. Turk J Math. (2018) 42:2631–42. doi: 10.3906/mat-1805-139

CrossRef Full Text | Google Scholar

26. Nisar KS, Rahman G, Tomovski Z. On a certain extension of the Riemann-Liouville fractional derivative operator. Commun Korean Math Soc. (2019) 34:507–22. doi: 10.4134/CKMS.c180140

CrossRef Full Text | Google Scholar

27. Rahman G, Mubeen S, Nisar KS, Choi J. Certain extended special functions and fractional integral and derivative operators via an extended beta functions. Nonlinear Funct Anal Appl. (2019) 24:1–13. Available online at: http://nfaa.kyungnam.ac.kr/journal-nfaa/index.php/NFAA/article/view/1148/990

Google Scholar

28. Rahman G, Mubeen S, Nisar KS. On generalized k-fractional derivative operator. AIMS Math. (2020) 5:1936–45. doi: 10.3934/math.2020129

CrossRef Full Text | Google Scholar

29. Modanl M. On the numerical solution for third order fractional partial differential equation by difference scheme method. Int J Optim Control Theor Appl. (2019) 9:1–5. doi: 10.11121/ijocta.01.2019.00678

CrossRef Full Text | Google Scholar

30. Vivek D, Kanagarajan K, Sivasundaram S. Dynamics and stability results for Hilfer fractional type thermistor problem. Fractal Fract. (2017) 1:5. doi: 10.3390/fractalfract1010005

CrossRef Full Text | Google Scholar

31. Ozdemir N, Avci D, Iskender B. The numerical solutions of a two-dimensional space-time Riesz-Caputo fractional diffusion equation. Int J Optim Control Theor Appl. (2011) 1:17–26. doi: 10.11121/ijocta.01.2011.0028

CrossRef Full Text | Google Scholar

32. Jarad F, Abdeljawad T. A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. (2018) 2:88–98. doi: 10.3934/dcdss.2020039

CrossRef Full Text | Google Scholar

33. Kerr FH. Namias fractional Fourier-Transforms on L2 and applications to differential equations. J Math Anal Appl. (1988) 136:404–18.

Google Scholar

34. Jarad F, Abdeljawad T. Generalized fractional derivatives and laplace transform. Discrete Contin Dyn Syst Ser S. (2020) 13:709–22.

Google Scholar

35. Diaz R, Pariguan E. On hypergeometric functions and pochhammer k-symbol. Divulg Math. (2007) 15:179–92. Available online at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.930.1846&rep=rep1&type=pdf

Google Scholar

36. Dorrego GA, Cerutti RA. The k-Mittag-Leffler function. Int J Contemp Math Sci. (2012) 7:705–16. Available online at: http://www.m-hikari.com/ijcms/ijcms-2012/13-16-2012/ceruttiIJCMS13-16-2012-2.pdf

Google Scholar

37. Luchko Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput Math Appl. (2010) 59:1766–72. doi: 10.1016/j.camwa.2009.08.015

CrossRef Full Text | Google Scholar

38. Luchko Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J Math Anal Appl. (2011) 374:538–48. doi: 10.1016/j.jmaa.2010.08.048

CrossRef Full Text | Google Scholar

39. Saxena RK, Kalla SL. On the solutions of certain fractional kinetic equations. Appl Math Comput. (2008) 199:504–11. doi: 10.1016/j.amc.2007.10.005

CrossRef Full Text | Google Scholar

40. Choi J, Kumar D. Solutions of generalized fractional kinetic equations involving Aleph functions. Math. Commun. (2015) 20:113–23. Available online at: https://www.mathos.unios.hr/mc/index.php/mc/article/view/1125

Google Scholar

41. Kumar D, Choi J. Generalized fractional kinetic equations associated with aleph function. Proc Jangjeon Math Soc. (2016) 19:145–55. Available online at: http://www.jangjeon.or.kr/etc/view.html?id=1684

Google Scholar

42. Dorrego GA, Kumar D. A generalization of the kinetic equation using the Prabhakar-type operators. Honam Math J. (2017) 39:401–16.

Google Scholar

Keywords: modified (k, s) fractional integral operator, (k, s)-Prabhakar fractional derivative, (k, s)-Hilfer-Prabhakar fractional derivative, fractional heat equation, fractional kinetic equation

Citation: Samraiz M, Perveen Z, Rahman G, Nisar KS and Kumar D (2020) On the (k,s)-Hilfer-Prabhakar Fractional Derivative With Applications to Mathematical Physics. Front. Phys. 8:309. doi: 10.3389/fphy.2020.00309

Received: 03 May 2020; Accepted: 06 July 2020;
Published: 23 October 2020.

Edited by:

Jordan Yankov Hristov, University of Chemical Technology and Metallurgy, Bulgaria

Reviewed by:

Mehmet Yavuz, Necmettin Erbakan University, Turkey
Necati Özdemir, Balıkesir University, Turkey

Copyright © 2020 Samraiz, Perveen, Rahman, Nisar and Kumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Devendra Kumar, devendra.maths@gmail.com