Impact Factor 2.129 | CiteScore 2.40
More on impact ›

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Psychol. | doi: 10.3389/fpsyg.2019.02395

The morphogenesis of speech gestures: From local computations to global patterns

  • 1University of Southern California, United States

A subtle property of speech gestures is the fact that they are spatially and temporally extended, meaning that phonological contrasts are expressed using spatially extended constrictions, and have a finite duration. This paper shows how this spatiotemporal particulation of the vocal tract, for the purpose of linguistic signaling, comes about. It is argued that local uniform computations amongst topographically organized microscopic units that either constrict or relax individual points of the vocal tract yield the global spatiotemporal macroscopic structures we call constrictions, the locus of phonological contrast. The dynamical process is a morphogenetic one, based on the Turing and Hopf patterns of mathematical physics and biology. It is shown that reaction-diffusion equations, which are introduced in a tutorial mathematical style, with simultaneous Turing and Hopf patterns predict the spatiotemporal particulation, as well as concrete properties of speech gestures, namely the pivoting of constrictions, as well as the intermediate value of Proportional Time to Peak velocity, which is well-studied and observed. The goal of the paper is to contribute to Bernstein’s program of understanding motor processes as the emergence of low degree of freedom descriptions from high degree of freedom systems by actually pointing to specific, predictive, dynamics that yield speech gestures from a reaction-diffusion morphogenetic process.

Keywords: speech gestures, Morphogenesis, BVAM system, Turing bifurcation, Hopf bifurcation

Received: 03 May 2019; Accepted: 07 Oct 2019.

Copyright: © 2019 Iskarous. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: PhD. Khalil Iskarous, University of Southern California, Los Angeles, United States, kiskaro@gmail.com