In the published article, the bibliography file was corrupted. As a consequence there were several inconsistencies within the citation list: titles did not match author lists or journal name or were parsed wrong and added in parts to a citation. Additionally, there were a few references included in the published version of the manuscript that were not a part of the original bibliography. The correct References list appears below.
The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
Statements
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
1
Abyar F. Novak I. (2022). Electronic structure analysis of riboflavin: OVGF and EOM-CCSD study. Acta A Mol. Biomol. Spectrosc.264, 120268. 10.1016/j.saa.2021.120268
2
Adler T. B. Werner H. J. Frederick R. (2009). Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules. J. Chem. Phys.130, 054106. 10.1063/1.3040174
3
Ali M. F. Khan R. Z. (2012). The study on load balancing strategies in distributed computing system. Int. J. Comput. Sci. Eng. Surv.3, 19–30. 10.5121/ijcses.2012.3203
4
Altman E. Brown K. R. Carleo G. Carr L. D. Demler E. Chin C. et al (2021). Quantum Simulators: architectures and Opportunities. PRX Quantum2, 017003.
5
Altun A. Izsák R. Bistoni G. (2021). Local energy decomposition of coupled-cluster interaction energies: interpretation, benchmarks, and comparison with symmetry-adapted perturbation theory. Int. J. Quantum Chem.121, e26339. 10.1002/qua.26339
6
Amos R. D. Rice J. E. (1989). Implementation of analytic derivative methods in quantum chemistry. Comput. Phys. Rep. 10, 147–187. 10.1016/0167-7977(89)90001-4
7
Andrade X. Strubbe D. De G. Larsen A. H. Oliveira M. J. T. Alberdi-Rodriguez J. et al (2015). Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys.17, 31371–31396. 10.1039/c5cp00351b
8
Ballesteros F. Dunivan S. E. Lao K. U. (2021). Coupled cluster benchmarks of large noncovalent complexes: the L7 dataset as well as DNA–ellipticine and buckycatcher–fullerene. J. Chem. Phys.154, 154104. 10.1063/5.0042906
9
Barnes A. L. Bykov D. Lyakh D. I. Tjerk P. (2019). Multilayer divide-expand-consolidate coupled-cluster method: demonstrative calculations of the adsorption energy of carbon dioxide in the Mg-MOF-74 metal–organic framework. J. Phys. Chem. A123, 8734–8743. 10.1021/acs.jpca.9b08077
10
Bartlett R. J. (2012). Coupled‐cluster theory and its equation‐of‐motion extensions. Mol. Sci.2, 126–138. 10.1002/wcms.76
11
Bartlett R. J. Shavitt I. (1977). Comparison of high-order many-body perturbation theory and configuration interaction for H2O. Phys. Lett.50, 190–198. 10.1016/0009-2614(77)80161-9
12
Bartlett R. J. Silver D. M. (1974). Correlation energy in LiH, BH, and HF with many-body perturbation theory using slater-type atomic orbitals. Int. J. Quantum Chem.8, 271–276. 10.1002/qua.560080831
13
Battaglino C. Ballard G. Tamara G. (2018). A practical randomized CP tensor decomposition. SIAM J. Matrix Analysis Appl.39, 876–901. 10.1137/17m1112303
14
Baudin P. Bykov D. Liakh D. Ettenhuber P. Kristensen K. (2017). A local framework for calculating coupled cluster singles and doubles excitation energies (LoFEx-CCSD). Mol. Phys.115, 2135–2144. 10.1080/00268976.2017.1290836
15
Baudin P. Kristensen K. (2016). LoFEx — a local framework for calculating excitation energies: illustrations using RI-CC2 linear response theory. J. Chem. Phys.144, 224106. 10.1063/1.4953360
16
Baudin P. Pawłowski F. Bykov D. Liakh D. Kristensen K. Olsen J. et al (2019). Cluster perturbation theory. III. Perturbation series for coupled cluster singles and doubles excitation energies. J. Chem. Phys.150, 134110. 10.1063/1.5046935
17
Baumgartner G. Auer A. Bernholdt D. E. Bibireata A. Choppella V. Cociorva D. et al (2005). Synthesis of high-performance parallel programs for a class of ab initio quantum chemistry models. IEEE93, 276–292. 10.1109/jproc.2004.840311
18
Binkley J. S. Pople J. A. (1975). Møller–Plesset theory for atomic ground state energies. Int. J. Quantum Chem.9, 229–236. 10.1002/qua.560090204
19
Bistoni G. Riplinger C. Minenkov Y. Cavallo L. Auer A. A. Neese F. (2017). Treating subvalence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach. J. Chem. Theory Comput.13, 3220–3227. 10.1021/acs.jctc.7b00352
20
Boudehane A. Albera L. Tenenhaus A. Le Brusquet L. Boyer R. (2022). Parallelization scheme for canonical polyadic decomposition of large-scale high-order tensors Signal Processing 199 108610.
21
Boys S. F. (1960). Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys.32, 296–299. 10.1103/revmodphys.32.296
22
Boys S. F. Rajagopal P. (1966). Quantum calculations: which are accumulative in accuracy, unrestricted in expansion functions. Econ. Comput.2, 1–24.
23
Bykov D. Kjaergaard T. (2017). The GPU-enabled divide-expand-consolidate RI-MP2 method (DEC-RI-MP2). J. Comput. Chem.38, 228–237. 10.1002/jcc.24678
24
Bykov D. Kristensen K. Kjærgaard T. (2016). The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: the DEC-RI-MP2 gradient. J. Chem. Phys.145, 024106. 10.1063/1.4956454
25
Carroll J. D. Chang J. J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition Psychometrika, 35, 283–319.
26
Cederbaum L. S. (2008). Born–Oppenheimer approximation and beyond for time-dependent electronic processes. J. Chem. Phys.128, 124101. 10.1063/1.2895043
27
Christensen A. S. Kubar T. Cui Q. Elstner M. (2016). Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116 (9), 5301–5337. 10.1021/acs.chemrev.5b00584
28
Christiansen O. Bak K. L. Koch H. S. Stephan P. A. (1998). A second-order doubles correction to excitation energies in the random-phase approximation. Phys. Lett.284, 47–55. 10.1016/s0009-2614(97)01285-2
29
Čížek J. (1966). On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys.45, 4256–4266. 10.1063/1.1727484
30
Collins J. B. Schleyer V. R. Binkley J. S. Pople J. A. (1976). Self-consistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys.64, 5142–5151. 10.1063/1.432189
31
Combes J-M. Duclos P. Seiler R. (1981). The Born-Oppenheimer approximation. Rigorous At. Mol. Phys.,185–213.
32
Corzo H. H. Sehanobish A. Kara O. (2021). Learning full configuration interaction electron correlations with deep learning. Mach. Learn. Phys. Sci. Neural Inf. Processing Syst., 35. 10.48550/ARXIV.2106.08138
33
Dalgaard E. Monkhorst H. J. (1983). Some aspects of the time-dependent coupled-cluster approach to dynamic response functions. Phys. Rev. A28, 1217–1222. 10.1103/physreva.28.1217
34
Datta D. Gordon M. S. (2021). A massively parallel implementation of the CCSD(T) method using the resolution-of-the-identity approximation and a hybrid distributed/shared memory parallelization model. J. Chem. Theory Comput.17, 4799–4822. 10.1021/acs.jctc.1c00389
35
Davidson E. R. (1972). Nat. orbitals6, 235–266.
36
Davidson E. R. Feller D. (1986). Basis set selection for molecular calculations. Chem. Rev.86, 681–696. 10.1021/cr00074a002
37
Davidson E. R. (1972). Properties and uses of natural orbitals. Rev. Mod. Phys.44, 451–464. 10.1103/revmodphys.44.451
38
Díaz-Tinoco M. Dolgounitcheva O. Zakrzewski V. G. Ortiz J. V. (2016). Composite electron propagator methods for calculating ionization energies. J. Chem. Phys.144, 224110. 10.1063/1.4953666
39
Dral P. O. Wu X. Thiel W. (2019). Semiempirical quantum-chemical methods with orthogonalization and dispersion corrections. J. Chem. Theory Comput.15, 1743–1760. 10.1021/acs.jctc.8b01265
40
Dunning T. H. Jr . (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys.90, 1007–1023. 10.1063/1.456153
41
Edmiston C. Krauss M. (1965). Configuration-interaction calculation of H3 and H2. J. Chem. Phys.42, 1119–1120. 10.1063/1.1696050
42
Edmiston C. Ruedenberg K. (1963). Localized atomic and molecular orbitals. Rev. Mod. Phys.35, 457–464. 10.1103/revmodphys.35.457
43
Elstner M. Frauenheim T. Kaxiras E. Seifert G. Suhai S. (2000). A self-consistent charge density-functional based tight-binding scheme for large biomolecules. Phys. Status Solidi B217, 357–376. 10.1002/(sici)1521-3951(200001)217:1<357::aid-pssb357>3.0.co;2-j
44
Elstner M. Seifert G. (2014). Density functional tight binding. Philos. Trans. A Math. Phys. Eng. Sci.372, 20120483. 10.1098/rsta.2012.0483
45
Eriksen J. J. Baudin P. Ettenhuber P. Kristensen K. Kjærgaard T. Jørgensen P. (2015). Linear-scaling coupled cluster with perturbative triple excitations: The divide–expand–consolidate CCSD (T) model. J. Chem. Theory Comput.11, 2984–2993. 10.1021/acs.jctc.5b00086
46
Eriksen J. J. Jørgensen P. Gauss J. (2015). On the convergence of perturbative coupled cluster triples expansions: error cancellations in the CCSD (T) model and the importance of amplitude relaxation. J. Chem. Phys.142, 014102. 10.1063/1.4904754
47
Eriksen J. J. Kristensen K. Kjærgaard T. Jørgensen P. Gauss J. (2014). A Lagrangian framework for deriving triples and quadruples corrections to the CCSD energy. J. Chem. Phys.140, 064108. 10.1063/1.4862501
48
Eriksen J. J. Matthews D. A. Jørgensen P. Gauss J. (2015). Communication: the performance of non-iterative coupled cluster quadruples models. J. Chem. Phys.143, 041101. 10.1063/1.4927247
49
Ettenhuber P. Baudin P. Kjærgaard T. Jørgensen P. Kristensen K. (2016). Orbital spaces in the divide-expand-consolidate coupled cluster method. J. Chem. Phys.144 (16), 164116. 10.1063/1.4947019
50
Ettenhuber P. (2023). ScaTeLib - a scalable tensor library.
51
Favier G. de Almeida A. L. (2014). Overview of constrained PARAFAC models. EURASIP J. Adv. Signal Process.142. 10.1186/1687-6180-2014-142
52
Fedorov D. G. (2017). The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications. WIREs Comput. Mol. Sci.,7 (6), e1322. 10.1002/wcms.1322
53
Fedorov D. G. Pham B. Q. (2023). Multi-level parallelization of quantum-chemical calculations. J. Chem. Phys.158 (16), 164106. 10.1063/5.0144917
54
Foster I. (1995). Designing and building parallel programs: Concepts and tools for parallel software engineering.
55
Friedrich J. Dolg M. (2009). Fully automated incremental evaluation of MP2 and CCSD (T) energies: application to water clusters. J. Chem. Theory Comput.5, 287–294. 10.1021/ct800355e
56
Friedrich J. Hänchen J. (2013). Incremental CCSD(T)(F12*)|MP2: A black box method to obtain highly accurate reaction energies. J. Chem. Theory Comput.9, 5381–5394. 10.1021/ct4008074
57
Frisch M. J. Pople J. A. Binkley J. S. (1984). Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys.80, 3265–3269. 10.1063/1.447079
58
Frisch M. J. Trucks G. W. Schlegel H. B. Scuseria G. E. Robb M. A. Cheeseman J. R. et al (2021). Gaussian development version revision. J15.
59
Fung V. Zhang J. Juarez E. Sumpter B. G. (2021). Benchmarking graph neural networks for materials chemistry. Npj Comput. Mater. 7 (1), 1–8.
60
Gonzalez-Escribano A. Llanos D. R. Orden D. Palop B. (2006). Parallelization alternatives and their performance for the convex hull problem. Appl. Math. Model.30, 563–577. 10.1016/j.apm.2005.05.022
61
Götz A. W. Williamson M. J. Xu D. Poole D. Le Grand S. Walker R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Gen. born J. Chem. Theory Comput.8, 1542–1555. 10.1021/ct200909j
62
Grimme S. Antony J. Ehrlich S. Krieg H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.132, 154104. 10.1063/1.3382344
63
Gyevi-Nagy L. Kállay M. Nagy P. R. (2021). Accurate reduced-cost CCSD(T) energies: Parallel implementation, benchmarks, and large-scale applications. J. Chem. Theory Comput.17, 860–878. 10.1021/acs.jctc.0c01077
64
Gyevi-Nagy L. Kállay M. Nagy P. R. (2019). Integral-direct and parallel implementation of the CCSD(T) method: algorithmic developments and large-scale applications. J. Chem. Theory Comput.16, 366–384. 10.1021/acs.jctc.9b00957
65
Hagebaum-Reignier D. Girardi R. Carissan Y. Humbel S. (2007). Hückel theory for Lewis structures: hückel–Lewis configuration interaction (HL-CI). J. Mol. Struct. THEOCHEM.817, 99–109. 10.1016/j.theochem.2007.04.026
66
Haghighatlari M. Hachmann J. (2019). Advances of machine learning in molecular modeling and simulation. Curr. Opin. Chem. Eng.23, 51–57. 10.1016/j.coche.2019.02.009
67
Hampel C. Werner H. J. (1996). Local treatment of electron correlation in coupled cluster theory. J. Chem. Phys.104, 6286–6297. 10.1063/1.471289
68
Harris F. E. (1977). Coupled-cluster method for excitation energies. Int. J. Quantum Chem.12, 403–411. 10.1002/qua.560120848
69
Hasanein A. A. Evans M. W. (1996). Computational methods in quantum chemistry, 2.
70
Häser M. (1993). Møller-Plesset (MP2) perturbation theory for large molecules Theor. Chim. Acta87, 147–173.
71
Hättig C. Hellweg A. Köhn A. (2006). Distributed memory parallel implementation of energies and gradients for second-order Møller–Plesset perturbation theory with the resolution-of-the-identity approximation. Phys. Chem. Chem. Phys.8, 1159. 10.1039/b515355g
72
Hättig C. Weigend F. (2000). CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J. Chem. Phys.113, 5154–5161. 10.1063/1.1290013
73
Head-Gordon M. R. Rudolph J. Oumi M Lee T. J. (1994). A doubles correction to electronic excited states from configuration interaction in the space of single substitutions. Chem. Phys. Lett.219, 21–29. 10.1016/0009-2614(94)00070-0
74
Hehre W. J. Stewart R. F. Pople J. A. (1969). Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys.51, 2657–2664. 10.1063/1.1672392
75
Helgaker T. Coriani S. Jørgensen P. Kristensen K. Olsen J. Ruud K. (2012). Recent advances in wave function-based methods of molecular-property calculations. Chem. Rev.112 (1), 543–631. 10.1021/cr2002239
76
Helgaker T. Jørgensen P. Olsen J. (2000). Molecular electronic-structure theory.
77
Helmich B. Hättig C. (2014). A pair natural orbital based implementation of ADC(2)-x: Perspectives and challenges for response methods for singly and doubly excited states in large molecules Comput. Theor. Chem.1040, 1041 35–44.
78
Herbert J. M. (2019). Fantasy versus reality in fragment-based quantum chemistry. J. Chem. Phys.151, 170901. 10.1063/1.5126216
79
Hillers-Bendtsen A. E. Bykov D. Barnes A. Liakh D. Corzo H. H. Olsen J. et al (2023). Massively parallel GPU enabled third-order cluster perturbation excitation energies for cost-effective large scale excitation energy calculationsJ. Chem. Phys.158 (14), 144111, 10.1063/5.0142780
80
Hillers-Bendtsen A. E. Høyer N. M Kjeldal F. Ø Mikkelsen K. V. Olsen J et al (2022). Cluster perturbation theory. VIII. First order properties for a coupled cluster state. J. Chem. Phys.157, 024108. 10.1063/5.0082585
81
Hitchcock F. L. (1927). The expression of a tensor or a polyadic as a sum of products. J. Math. Phys.6, 164–189. 10.1002/sapm192761164
82
Hoy E P. Mazziotti D. A. (2015). Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure. J. Chem. Phys.143, 064103. 10.1063/1.4928064
83
Høyer N. M. Kjeldal F. Ø. Hillers B. Erbs A Mikkelsen K. V. Olsen J. et al (2022). Cluster perturbation theory. VI. Ground-state energy series using the Lagrangian. J. Chem. Phys.157, 024106. 10.1063/5.0082583
84
Høyvik I. M. Jansik B. Jørgensen P. (2012). Orbital localization using fourth central moment minimization. J. Chem. Phys.137, 224114. 10.1063/1.4769866
85
Høyvik I. M. Jørgensen P. (2016). Characterization and generation of local occupied and virtual Hartree–Fock orbitals. Chem. Rev.116, 3306–3327. 10.1021/acs.chemrev.5b00492
86
Høyvik I. M. Kristensen K. Jansík B. Jørgensen P. (2012). The divide-expand-consolidate family of coupled cluster methods: numerical illustrations using second order møller-Plesset perturbation theory. J. Chem. Phys.136, 014105. 10.1063/1.3667266
87
Høyvik I. M. Kristensen K. Kjærgaard T. Jørgensen P. (2014). A perspective on the localizability of Hartree–Fock orbitals. Theor. Chem. Acc. 133, 1417. 10.1007/s00214-013-1417-x
88
Ishikawa T. Kuwata K. (2012). RI-MP2 gradient calculation of large molecules using the fragment molecular orbital method. J. Phys. Chem. Lett.3, 375–379. 10.1021/jz201697x
89
Jakobsen S. Kristensen K. Jensen F. (2013). Electrostatic potential of insulin: exploring the limitations of density functional theory and force field methods. J. Chem. Theory Comput.9, 3978–3985. 10.1021/ct400452f
90
Jansík B. Høst S. Kristensen K. Jørgensen P. (2011). Local orbitals by minimizing powers of the orbital variance. J. Chem. Phys.134, 194104. 10.1063/1.3590361
91
Jha A. Nottoli M. Mikhalev A. Quan C. Stamm B. (2022). Linear scaling computation of forces for the domain-decomposition linear Poisson–Boltzmann method. J. Chem. Phys. 158 (10), 104105. 10.1063/5.0141025
92
Kapuy E. Csépes Z. Kozmutza C. (1983). Application of the many-body perturbation theory by using localized orbitals. Int. J. Quantum Chem.23, 981–990. 10.1002/qua.560230321
93
Keith J. A. Vassilev-Galindo V. Cheng B. Chmiela S. Gastegger M. Muüller K. R. et al (2021). Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev.121, 9816–9872. 10.1021/acs.chemrev.1c00107
94
Khoromskaia V. Khoromskij B. N. (2015). Tensor numerical methods in quantum chemistry: from Hartree–Fock to excitation energies. Phys. Chem. Chem. Phys.17, 31491–31509. 10.1039/c5cp01215e
95
Kirtman B. (1995). Local quantum chemistry: the local space approximation for Møller–Plesset perturbation theory. Int. J. Quantum Chem.55 (2), 103–108. 10.1002/qua.560550204
96
Kjærgaard T. Baudin P. Bykov D. Eriksen J. J. Ettenhuber P. Kristensen K. et al (2017). Massively parallel and linear-scaling algorithm for second-order Møller–Plesset perturbation theory applied to the study of supramolecular wires. Comput. Phys. Commun.212, 152–160. 10.1016/j.cpc.2016.11.002
97
Kjærgaard T. Baudin P. Bykov D. Kristensen K. Jørgensen P. (2017). The divide–expand–consolidate coupled cluster scheme Wiley Interdiscip. Rev. Comput. Mol. Sci.7 e1319.
98
Kjærgaard T. (2017). The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. J. Chem. Phys.146, 044103. 10.1063/1.4973710
99
Kleier D. A. Halgren T. A. Hall J. H. Lipscomb W. N. (1974). Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods. J. Chem. Phys.61, 3905–3919. 10.1063/1.1681683
100
Kolda T. G. Bader B. W. (2009). Tensor decompositions and applications. SIAM Rev.51 (3), 455–500. 10.1137/07070111x
101
Krause C. Werner H. J. (2012). Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals. Phys. Chem. Chem. Phys.14, 7591–7604. 10.1039/c2cp40231a
102
Krishnan R. B. J. S. Binkley J. S. Seeger R Pople J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys.72, 650–654. 10.1063/1.438955
103
Krishnan R. Pople J. A. (1978). Approximate fourth-order perturbation theory of the electron correlation energy. Int. J. Quantum Chem.14, 91–100. 10.1002/qua.560140109
104
Kristensen K. Eriksen J. J. Matthews D. A. Olsen J. Jørgensen P. (2016). A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation. J. Chem. Phys.144, 064103. 10.1063/1.4941605
105
Kristensen K. Høyvik I. M. Jansík B. Jørgensen P. Kjærgaard T. Reine S. et al (2012). MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme. Phys. Chem. Chem. Phys.14, 15706–15714. 10.1039/c2cp41958k
106
Kristensen K. Jørgensen P. Jansík B. Kjærgaard T. Reine S. (2012). Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme. J. Chem. Phys.137, 114102. 10.1063/1.4752432
107
Kristensen K. Ziółkowski M. Jansík B. Kjærgaard T. Jørgensen P. (2011). A locality analysis of the divide–expand–consolidate coupled cluster amplitude equations. J. Chem. Theory Comput.7, 1677–1694. 10.1021/ct200114k
108
Kurashige Y. Yang J. Chan G. K. L. Manby F. R. (2012). Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory. J. Chem. Phys.136 (12), 124106. 10.1063/1.3696962
109
Kutzelnigg W. (2007). What I like about Hückel theory. J. Comput. Chem.28, 25–34. 10.1002/jcc.20470
110
Article title Frontiers in neuroscience (2013) Article title Frontiers in neuroscience3010127–10134.
111
Levine I. N. Busch D. H. Shull H. (2009). Quantum chemistry, 6.
112
Li R. R. Liebenthal M. D. De Prince Eugene A. (2021). Challenges for variational reduced-density-matrix theory with three-particle N-representability conditions. J. Chem. Phys.155, 174110. 10.1063/5.0066404
113
Liakos D. G. Sparta M. Kesharwani M. K. Martin J. M. L. Neese F. (2015). Exploring the accuracy limits of local pair natural orbital coupled-cluster theory. J. Chem. Theory Comput.11, 1525–1539. 10.1021/ct501129s
114
Lin N. Marianetti C. A. Millis A. J. Reichman D. R. (2011). Dynamical mean-field theory for quantum chemistry. Phys. Rev. Lett.106, 096402. 10.1103/physrevlett.106.096402
115
Lipparini F. Stamm B. Canc‘es E. Maday Y. Mennucci B. (2013). Fast domain decomposition algorithm for continuum solvation models: energy and first derivatives. J. Chem. Theory Comput.9, 3637–3648. 10.1021/ct400280b
116
Liu W. (2020). Essentials of relativistic quantum chemistry. J. Chem. Phys.152, 180901. 10.1063/5.0008432
117
Löwdin P. O. (1958). Correlation problem in many-electron quantum mechanics I. Review of different approaches and discussion of some current ideas. Adv. Chem. Phys.207-322.
118
Löwdin P. O. (1955). Quantum theory of many-particle systems. II. Study of the ordinary Hartree-Fock approximation. Phys. Rev.97, 1490–1508. 10.1103/physrev.97.1490
119
Löwdin P. O. (1955). Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev.97, 1474–1489. 10.1103/physrev.97.1474
120
Luo L. Straatsma T. Suarez L. E. A Broer R. Bykov D. et al (2020). Pre-exascale accelerated application development: The ORNL Summit experience, IBM J. Res. Dev.64, 1–11. 10.1147/jrd.2020.2965881
121
Lyakh D. I. (2023). TAL-SH: Tensor algebra library for shared memory computers.
122
Ma Y. Li Z. Y. Chen X. Ding B. Li N. Lu T. et al (2023). Machine-learning assisted scheduling optimization and its application in quantum chemical calculations. J. Comput. Chem.44, 1174–1188. 10.1002/jcc.27075
123
Maslow A. H. (1966). The psychology of science: A reconnaissance.
124
Menezes F. Kats D. Werner H. J. (2016). Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2). J. Chem. Phys.145, 124115. 10.1063/1.4963019
125
Mester D. Nagy P. R. Kállay M. (2019). Reduced-Scaling correlation methods for the excited states of large molecules: implementation and benchmarks for the second-order algebraic-diagrammatic construction approach. J. Chem. Theory Comput.15, 6111–6126. 10.1021/acs.jctc.9b00735
126
Mitxelena I. Piris M. (2022). Benchmarking GNOF against FCI in challenging systems in one, two, and three dimensions. J. Chem. Phys.156, 214102. 10.1063/5.0092611
127
Moawad Y. Vanderbauwhede W. Steijl R. (2022). Investigating hardware acceleration for simulation of CFD quantum circuits. Front. Mech. Eng.8. 10.3389/fmech.2022.925637
128
Møller C. Plesset M. S. (1934). Note on an approximation treatment for many-electron systems. Phys. Rev.46, 618–622. 10.1103/physrev.46.618
129
Monari A. Rivail J. L. Assfeld X. (2013). Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Acc. Chem. Res.46, 596–603. 10.1021/ar300278j
130
Nagy B. Jensen F. (2017). Basis sets in quantum chemistry, 93–149.
131
Nagy P. R. Kállay M. (2019). Approaching the basis set limit of CCSD(T) energies for large molecules with local natural orbital coupled-cluster methods. J. Chem. Theory Comput.15, 5275–5298. 10.1021/acs.jctc.9b00511
132
Neese F. Wennmohs F. Hansen A. (2009). Efficient and accurate local approximations to coupled-electron pair approaches: an attempt to revive the pair natural orbital method. J. Chem. Phys.130, 114108. 10.1063/1.3086717
133
Neese F. Wennmohs F. Becker U. Riplinger C. (2020). The ORCA quantum chemistry program package. J. Chem. Phys.152, 224108. 10.1063/5.0004608
134
Nesbet R. K. (1955). Configuration interaction in orbital theories. Proc. R. Soc. Lond. A Math. Phys. Sci.230, 312–321.
135
Nikodem A. Matveev A. V. Soini T. M. Rösch N. (2014). Load balancing by work-stealing in quantum chemistry calculations: application to hybrid density functional methods. Int. J. Quantum Chem.114, 813–822. 10.1002/qua.24677
136
Nottoli M. Stamm B. Scalmani G. Lipparini F. (2019). Quantum calculations in solution of energies, structures, and properties with a domain decomposition polarizable continuum model. J. Chem. Theory Comput.15, 6061–6073. 10.1021/acs.jctc.9b00640
137
Olsen J. Erbs A. Kjeldal F. Ø. Høyer N. M Mikkelsen K. V. et al (2022). Cluster perturbation theory. VII. The convergence of cluster perturbation expansions. J. Chem. Phys.157, 024107. 10.1063/5.0082584
138
Olsen J. M. H. List N. H. Kristensen K. Kongsted J. (2015). Accuracy of protein embedding potentials: An analysis in terms of electrostatic potentials. J. Chem. Theory Comput.11, 1832–1842. 10.1021/acs.jctc.5b00078
139
Oseledets I. V. (2011). Tensor-train decomposition. SIAM J. Sci. Comput.33 (5), 2295–2317. 10.1137/090752286
140
Ozog D. Hammond J. R. Dinan J. Balaji P. Shende S. Malony A. (2013). “Inspector-executor load balancing algorithms for block-sparse tensor contractions,” in 2013 42nd International conference on parallel processing, 30–39. 10.1109/ICPP.2013.12
141
Patil U. Shedge R. (2013). Improved hybrid dynamic load balancing algorithm for distributed environment. Int. J. Sci. Res. Publ.3, 1.
142
Paudics A. Hessz D. Bojtár M. Bitter I. Horváth V. Kállay M. et al (2022). A pillararene-based indicator displacement assay for the fluorescence detection of vitamin B1. Sensors Actuators B Chem.369, 132364. 10.1016/j.snb.2022.132364
143
Pawłowski F. Olsen J. Jørgensen P. (2019a). Cluster perturbation theory. II. Excitation energies for a coupled cluster target state. J. Chem. Phys.150, 134109. 10.1063/1.5053167
144
Pawłowski F. Olsen J. Jørgensen P. (2019b). Cluster perturbation theory. I. Theoretical foundation for a coupled cluster target state and ground-state energies. J. Chem. Phys.150, 134108. 10.1063/1.5004037
145
Pawłowski F. Olsen J. Jørgensen P. (2019c). Cluster perturbation theory. IV. Convergence of cluster perturbation series for energies and molecular properties. J. Chem. Phys.150, 134111. 10.1063/1.5053622
146
Pawłowski F. Olsen J. Jørgensen P. (2019d). Cluster perturbation theory. V. Theoretical foundation for cluster linear target states. J. Chem. Phys.150, 134112. 10.1063/1.5053627
147
Phan A. H. Tichavský P. Cichocki A. (2013). Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations. IEEE Trans. Signal Process.61, 4834–4846. 10.1109/tsp.2013.2269903
148
Pinski P. Neese F. (2018). Communication: exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). J. Chem. Phys.148, 031101. 10.1063/1.5011204
149
Pipek J. Mezey P. G. (1989). Pair natural orbitals: a concept for simplifying Hartree–Fock and CI wavefunctions. J. Chem. Phys.90, 4916–4926. 10.1063/1.456588
150
Pople J. A. (1999). Nobel lecture: Quantum chemical models. Mod. Phys.71, 1267–1274. 10.1103/revmodphys.71.1267
151
Pople J. A. Binkley J. S. Seeger R. (1976). Theoretical models incorporating electron correlation. Int. J. Quantum Chem.10, 1–19. 10.1002/qua.560100802
152
Pulay P. Saebø S. (1986). Orbital-invariant formulation and second-order gradient evaluation in Mller-Plesset perturbation theory. Chem. Acc.69, 357–368. 10.1007/bf00526697
153
Pulay P. Hamilton T. P. (1988). UHF natural orbitals for defining and starting MC-SCF calculations. J. Chem. Phys.88, 4926–4933. 10.1063/1.454704
154
Pulay P. (1983). Localizability of dynamic electron correlation. Chem. Phys. Lett.100, 151–154. 10.1016/0009-2614(83)80703-9
155
Pyykkö P. (2012). Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem.63, 45–64. 10.1146/annurev-physchem-032511-143755
156
Qiu J. Zhao Z. Wu B. Vishnu A. Song S. (2017). Enabling scalability-sensitive speculative parallelization for FSM computations. Proc. Int. Conf. Supercomput., 2.
157
Qiu Y. Zhou G. Zhang Y. Cichocki A. (2021). Canonical polyadic decomposition (CPD) of big tensors with low multilinear rank. Multimed. Tools Appl. 80, 22987–23007. 10.1007/s11042-020-08711-1
158
Raghavachari K. Trucks G. W. Pople J. A. Head-Gordon M. (1989). A fifthorder perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157 (6), 479–483. 10.1016/s0009-2614(89)87395-6
159
Riplinger C. Neese F. (2013). An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys.138, 034106. 10.1063/1.4773581
160
Riplinger C. Sandhoefer B. Hansen A. Neese F. (2013). Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys.139, 134101. 10.1063/1.4821834
161
Rolik Z. Szegedy L. Ladjánszki I. Ladóczki B. Kállay M. (2013). An efficient linear-scaling CCSD (T) method based on local natural orbitals. J. Chem. Phys.139, 094105. 10.1063/1.4819401
162
Russ N. J. Crawford T. D. (2004). Local correlation in coupled cluster calculations of molecular response properties. Phys. Lett.400, 104–111. 10.1016/j.cplett.2004.10.083
163
Sæbø S. Almlöf J. (1989). Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett.154, 83–89. 10.1016/0009-2614(89)87442-1
164
Sæbø S. Pulay P. (1985). Local configuration interaction: an efficient approach for larger molecules. Chem. Phys. Lett.113, 13–18. 10.1016/0009-2614(85)85003-x
165
Saebø S. Pulay P. (1993). Local treatment of electron correlation. Annu. Rev. Phys. Chem.44, 213–236. 10.1146/annurev.pc.44.100193.001241
166
Saebo S. Pulay P. (1988). The local correlation treatment. II. Implementation and tests. J. Chem. Phys.88, 1884–1890. 10.1063/1.454111
167
Saitow M. Uemura K. Yanai T. (2022). A local pair-natural orbital-based complete-active space perturbation theory using orthogonal localized virtual molecular orbitals. J. Chem. Phys.157, 084101. 10.1063/5.0094777
168
Schriber J. B. Evangelista F. A. (2017). Adaptive configuration interaction for computing challenging electronic excited states with tunable accuracy. J. Chem. Theory Comput.13, 5354–5366. 10.1021/acs.jctc.7b00725
169
Schütz M. Yang J. Frederick R. Werner H. J. (2013). The orbital-specific virtual local triples correction: OSV-L (t). J. Chem. Phys.138, 054109. 10.1063/1.4789415
170
Schwilk M. Ma Q. Köppl C. Werner H. J. (2017). Scalable electron correlation methods. 3. Efficient and accurate parallel local coupled cluster with pair natural orbitals (PNO-LCCSD). J. Chem. Theory Comput.13, 3650–3675. 10.1021/acs.jctc.7b00554
171
Semidalas E. Martin J. M. L. (2022). The MOBH35 metal–organic barrier heights reconsidered: Performance of local-orbital coupled cluster approaches in different static correlation regimes. J. Chem. Theory Comput.18, 883–898. 10.1021/acs.jctc.1c01126
172
Shang H. Shen L. Fan Y. Xu Z. Guo C. Liu J. et al (2022). Large-Scale Simulation of Quantum Computational Chemistry on a New Sunway Supercomputer. SC22: Int. Conf. High Perform. Comput. Netw. Storage Anal. 1–14. 10.1109/SC41404.2022.00019
173
Shao Y. Gan Z. Epifanovsky E. Gilbert A. T. B. Wormit M Kussmann J et al (2015). Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys.113, 184–215. 10.1080/00268976.2014.952696
174
Sharapa D. I. Genaev A Cavallo L. Minenkov Y. (2019). A robust and cost-efficient scheme for accurate conformational energies of organic molecules. ChemPhysChem20, 92–102. 10.1002/cphc.201801063
175
Sho S. Odanaka S. (2019). Parallel domain decomposition methods for a quantum-corrected drift–diffusion model for MOSFET devices. Phys. Commun.237, 8–16. 10.1016/j.cpc.2018.10.029
176
Simons J. Nichols J. (1997). Quantum mechanics in chemistry.
177
Sitkiewicz S. P. Rodriguez-Mayorga M. Luis Josep M. Matito E. (2019). Partition of optical properties into orbital contributions. Phys. Chem. Chem. Phys.21, 15380–15391. 10.1039/c9cp02662b
178
Sparta M. Retegan M. Pinski P. Riplinger C. Becker U. Neese F. (2017). Multilevel approaches within the local pair natural orbital framework. J. Chem. Theory Comput.13, 3198–3207. 10.1021/acs.jctc.7b00260
179
Stegeman A. (2006). Degeneracy in Candecomp/Parafac explained for p×p× 2 arrays of rank p + 1 or higher. Psychometrika71, 483–501.
180
Stoychev G. L. Auer A. A. Gauss J. Neese F. (2021). DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. J. Chem. Phys.154, 164110. 10.1063/5.0047125
181
Su H. C. Jiang H. Zhang B. (2007). Synchronization on Speculative Parallelization of Many-Particle Collision Simulation. World Congr. Eng. Comput. Sci.
182
Subotnik J. E. Head-Gordon M. (2005). A local correlation model that yields intrinsically smooth potential-energy surfaces. J. Chem. Phys.123, 064108. 10.1063/1.2000252
183
Surján P. R. (1999). “An introduction to the theory of geminals,” in Correlation and localization, 63–88.
184
Szabo A. Ostlund N. S. (2012). Modern quantum chemistry: Introduction to advanced electronic structure theory.
185
Szabó P. B. Csóka J. Kállay M. Nagy P. R. (2021). Linear-Scaling open-shell MP2 approach Algorithm benchmarks and large-scale applications, J. Chem. Theory Comput.17, 2886–2905. 10.1021/acs.jctc.1c00093
186
Tew D. P. Klopper W. Helgaker T. (2007). Electron correlation: the many-body problem at the heart of chemistry. J. Comput. Chem.28, 1307–1320. 10.1002/jcc.20581
187
Tew D. P. (2019). Principal domains in local correlation theory. J. Chem. Theory Comput.15, 6597–6606. 10.1021/acs.jctc.9b00619
188
Thiel W (2014). Semiempirical quantum–chemical methods. Rev. Comput. Mol. Sci.4, 145–157. 10.1002/wcms.1161
189
Titov A. V. Ufimtsev I. S. Luehr N. Martinez T. J. (2013). Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 9 (1), 213–221. 10.1021/ct300321a
190
Tucker L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika31, 279–311. 10.1007/BF02289464
191
Unke O. Bogojeski M. Gastegger M. Geiger M. Smidt T. Müller K. R. (2021). E(3)-equivariant prediction of molecular wavefunctions and electronic densities. Adv. Neural Inf. Process. Syst. 3414434–14447.
192
Vahtras O. Almlöf J. Feyereisen M. W. (1993). Integral approximations for LCAO-SCF calculations. Chem. Phys. Lett.213, 514–518. 10.1016/0009-2614(93)89151-7
193
Valiev M. Bylaska E. J. Govind N Kowalski K Straatsma T. P. Van Dam H. J. J. et al (2010). NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Phys. Commun.181, 1477–1489. 10.1016/j.cpc.2010.04.018
194
Vannieuwenhoven N. Meerbergen K. Vandebril R. (2015). Computing the gradient in optimization algorithms for the CP decomposition in constant memory through tensor blocking. SIAM J. Sci. Comput.37 (3), C415–C438. 10.1137/14097968x
195
Wang B. Yang K. R. Xu X. Isegawa M. Leverentz H. R. Truhlar D. G. (2014). Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates. Accounts Chem. Res.47, 2731–2738. 10.1021/ar500068a
196
Wang H. Neese C. F. Morong C. P. Kleshcheva M. Oka T. (2013) High-Resolution near-infrared spectroscopy of and its deuterated isotopologuesJ. Phys. Chem. A1179908–9918.
197
Wang Y. M. Hättig C. Reine S. Valeev E. Kjærgaard T. Kristensen K. (2016). Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. J. Chem. Phys.144, 204112. 10.1063/1.4951696
198
Wang Y. Ni Z. Neese F. Li W. Guo Y. Li S. (2022). Cluster-in-Molecule method combined with the domain-based local pair natural orbital approach for electron correlation calculations of periodic systems. J. Chem. Theory Comput.18, 6510–6521. 10.1021/acs.jctc.2c00412
199
Werner H. J. (1995). “Problem decomposition in quantum chemistry,” in Domainbased parallelism and problem decomposition methods in computational science and engineering (SIAM), 239–261. 10.1137/1.9781611971507.ch14
200
Westermayr J. Gastegger M. Schütt K. T. Reinhard J. (2021). Perspective on integrating machine learning into computational chemistry and materials science. J. Chem. Phys.154, 230903. 10.1063/5.0047760
201
Woolley R. G. Sutcliffe B. T. (1977). Molecular structure and the born—oppenheimer approximation. Phys. Lett.45, 393–398. 10.1016/0009-2614(77)80298-4
202
Xie Z. Y. Jiang H. C. Chen Q. N. Weng Z. Y. Xiang T. (2009). Second renormalization of tensor-network states. Phys. Rev. Lett.103, 160601. 10.1103/physrevlett.103.160601
203
Yang J. Chan G. Frederick R. Schütz M. Werner H. J. (2012). The orbital-specific-virtual local coupled cluster singles and doubles method. J. Chem. Phys.136, 144105. 10.1063/1.3696963
204
Yang J. Kurashige Y. Manby Frederick R. Chan G. K. L. (2011). Tensor factorizations of local second-order Møller–Plesset theory. J. Chem. Phys.134, 044123. 10.1063/1.3528935
205
Yates K. (2012). Hückel molecular orbital theory.
206
Zhang I. Y Grüneis A. (2019). Coupled cluster theory in materials science. Front. Mater.6. 10.3389/fmats.2019.00123
207
Zhang Q. Dwyer T. J. Tsui V. Case D. A. Cho J. Dervan P. B. et al (2004). NMR structure of a cyclic polyamide- DNA complex. J. Am. Chem. Soc.126, 7958–7966. 10.1021/ja0373622
208
Ziółkowski M. Jansík B. Kjærgaard T. Jørgensen P. (2010). Linear scaling coupled cluster method with correlation energy based error control. J. Chem. Phys.133, 014107. 10.1063/1.3456535
Summary
Keywords
coupled cluster theory, divide-expand-consolidate coupled cluster framework, cluster perturbation theory, excitation energies, tetrahydrocannabinol, deoxyribonucleic acid
Citation
Corzo HH, Hillers-Bendtsen AE, Barnes A, Zamani AY, Pawłowski F, Olsen J, Jørgensen P, Mikkelsen KV and Bykov D (2023) Corrigendum: Coupled cluster theory on modern heterogeneous supercomputers. Front. Chem. 11:1256510. doi: 10.3389/fchem.2023.1256510
Received
10 July 2023
Accepted
11 July 2023
Published
15 August 2023
Approved by
Frontiers Editorial Office, Frontiers Media SA, Switzerland
Volume
11 - 2023
Updates
Copyright
© 2023 Corzo, Hillers-Bendtsen, Barnes, Zamani, Pawłowski, Olsen, Jørgensen, Mikkelsen and Bykov.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Dmytro Bykov, bykovd@ornl.gov
Disclaimer
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.