You're viewing our updated article page. If you need more time to adjust, you can return to the old layout.

CORRECTION article

Front. Chem., 15 August 2023

Sec. Theoretical and Computational Chemistry

Volume 11 - 2023 | https://doi.org/10.3389/fchem.2023.1256510

Corrigendum: Coupled cluster theory on modern heterogeneous supercomputers

  • 1. Oak Ridge National Laboratory, Oak Ridge, TN, United States

  • 2. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark

  • 3. Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, CA, United States

  • 4. Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, United States

  • 5. Department of Chemistry, Aarhus University, Aarhus, Denmark

Article metrics

View details

2k

Views

450

Downloads

In the published article, the bibliography file was corrupted. As a consequence there were several inconsistencies within the citation list: titles did not match author lists or journal name or were parsed wrong and added in parts to a citation. Additionally, there were a few references included in the published version of the manuscript that were not a part of the original bibliography. The correct References list appears below.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Statements

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  • 1

    Abyar F. Novak I. (2022). Electronic structure analysis of riboflavin: OVGF and EOM-CCSD study. Acta A Mol. Biomol. Spectrosc.264, 120268. 10.1016/j.saa.2021.120268

  • 2

    Adler T. B. Werner H. J. Frederick R. (2009). Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules. J. Chem. Phys.130, 054106. 10.1063/1.3040174

  • 3

    Ali M. F. Khan R. Z. (2012). The study on load balancing strategies in distributed computing system. Int. J. Comput. Sci. Eng. Surv.3, 1930. 10.5121/ijcses.2012.3203

  • 4

    Altman E. Brown K. R. Carleo G. Carr L. D. Demler E. Chin C. et al (2021). Quantum Simulators: architectures and Opportunities. PRX Quantum2, 017003.

  • 5

    Altun A. Izsák R. Bistoni G. (2021). Local energy decomposition of coupled-cluster interaction energies: interpretation, benchmarks, and comparison with symmetry-adapted perturbation theory. Int. J. Quantum Chem.121, e26339. 10.1002/qua.26339

  • 6

    Amos R. D. Rice J. E. (1989). Implementation of analytic derivative methods in quantum chemistry. Comput. Phys. Rep. 10, 147187. 10.1016/0167-7977(89)90001-4

  • 7

    Andrade X. Strubbe D. De G. Larsen A. H. Oliveira M. J. T. Alberdi-Rodriguez J. et al (2015). Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys.17, 3137131396. 10.1039/c5cp00351b

  • 8

    Ballesteros F. Dunivan S. E. Lao K. U. (2021). Coupled cluster benchmarks of large noncovalent complexes: the L7 dataset as well as DNA–ellipticine and buckycatcher–fullerene. J. Chem. Phys.154, 154104. 10.1063/5.0042906

  • 9

    Barnes A. L. Bykov D. Lyakh D. I. Tjerk P. (2019). Multilayer divide-expand-consolidate coupled-cluster method: demonstrative calculations of the adsorption energy of carbon dioxide in the Mg-MOF-74 metal–organic framework. J. Phys. Chem. A123, 87348743. 10.1021/acs.jpca.9b08077

  • 10

    Bartlett R. J. (2012). Coupled‐cluster theory and its equation‐of‐motion extensions. Mol. Sci.2, 126138. 10.1002/wcms.76

  • 11

    Bartlett R. J. Shavitt I. (1977). Comparison of high-order many-body perturbation theory and configuration interaction for H2O. Phys. Lett.50, 190198. 10.1016/0009-2614(77)80161-9

  • 12

    Bartlett R. J. Silver D. M. (1974). Correlation energy in LiH, BH, and HF with many-body perturbation theory using slater-type atomic orbitals. Int. J. Quantum Chem.8, 271276. 10.1002/qua.560080831

  • 13

    Battaglino C. Ballard G. Tamara G. (2018). A practical randomized CP tensor decomposition. SIAM J. Matrix Analysis Appl.39, 876901. 10.1137/17m1112303

  • 14

    Baudin P. Bykov D. Liakh D. Ettenhuber P. Kristensen K. (2017). A local framework for calculating coupled cluster singles and doubles excitation energies (LoFEx-CCSD). Mol. Phys.115, 21352144. 10.1080/00268976.2017.1290836

  • 15

    Baudin P. Kristensen K. (2016). LoFEx — a local framework for calculating excitation energies: illustrations using RI-CC2 linear response theory. J. Chem. Phys.144, 224106. 10.1063/1.4953360

  • 16

    Baudin P. Pawłowski F. Bykov D. Liakh D. Kristensen K. Olsen J. et al (2019). Cluster perturbation theory. III. Perturbation series for coupled cluster singles and doubles excitation energies. J. Chem. Phys.150, 134110. 10.1063/1.5046935

  • 17

    Baumgartner G. Auer A. Bernholdt D. E. Bibireata A. Choppella V. Cociorva D. et al (2005). Synthesis of high-performance parallel programs for a class of ab initio quantum chemistry models. IEEE93, 276292. 10.1109/jproc.2004.840311

  • 18

    Binkley J. S. Pople J. A. (1975). Møller–Plesset theory for atomic ground state energies. Int. J. Quantum Chem.9, 229236. 10.1002/qua.560090204

  • 19

    Bistoni G. Riplinger C. Minenkov Y. Cavallo L. Auer A. A. Neese F. (2017). Treating subvalence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach. J. Chem. Theory Comput.13, 32203227. 10.1021/acs.jctc.7b00352

  • 20

    Boudehane A. Albera L. Tenenhaus A. Le Brusquet L. Boyer R. (2022). Parallelization scheme for canonical polyadic decomposition of large-scale high-order tensors Signal Processing 199 108610.

  • 21

    Boys S. F. (1960). Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys.32, 296299. 10.1103/revmodphys.32.296

  • 22

    Boys S. F. Rajagopal P. (1966). Quantum calculations: which are accumulative in accuracy, unrestricted in expansion functions. Econ. Comput.2, 124.

  • 23

    Bykov D. Kjaergaard T. (2017). The GPU-enabled divide-expand-consolidate RI-MP2 method (DEC-RI-MP2). J. Comput. Chem.38, 228237. 10.1002/jcc.24678

  • 24

    Bykov D. Kristensen K. Kjærgaard T. (2016). The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: the DEC-RI-MP2 gradient. J. Chem. Phys.145, 024106. 10.1063/1.4956454

  • 25

    Carroll J. D. Chang J. J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition Psychometrika, 35, 283319.

  • 26

    Cederbaum L. S. (2008). Born–Oppenheimer approximation and beyond for time-dependent electronic processes. J. Chem. Phys.128, 124101. 10.1063/1.2895043

  • 27

    Christensen A. S. Kubar T. Cui Q. Elstner M. (2016). Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116 (9), 53015337. 10.1021/acs.chemrev.5b00584

  • 28

    Christiansen O. Bak K. L. Koch H. S. Stephan P. A. (1998). A second-order doubles correction to excitation energies in the random-phase approximation. Phys. Lett.284, 4755. 10.1016/s0009-2614(97)01285-2

  • 29

    Čížek J. (1966). On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys.45, 42564266. 10.1063/1.1727484

  • 30

    Collins J. B. Schleyer V. R. Binkley J. S. Pople J. A. (1976). Self-consistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys.64, 51425151. 10.1063/1.432189

  • 31

    Combes J-M. Duclos P. Seiler R. (1981). The Born-Oppenheimer approximation. Rigorous At. Mol. Phys.,185213.

  • 32

    Corzo H. H. Sehanobish A. Kara O. (2021). Learning full configuration interaction electron correlations with deep learning. Mach. Learn. Phys. Sci. Neural Inf. Processing Syst., 35. 10.48550/ARXIV.2106.08138

  • 33

    Dalgaard E. Monkhorst H. J. (1983). Some aspects of the time-dependent coupled-cluster approach to dynamic response functions. Phys. Rev. A28, 12171222. 10.1103/physreva.28.1217

  • 34

    Datta D. Gordon M. S. (2021). A massively parallel implementation of the CCSD(T) method using the resolution-of-the-identity approximation and a hybrid distributed/shared memory parallelization model. J. Chem. Theory Comput.17, 47994822. 10.1021/acs.jctc.1c00389

  • 35

    Davidson E. R. (1972). Nat. orbitals6, 235266.

  • 36

    Davidson E. R. Feller D. (1986). Basis set selection for molecular calculations. Chem. Rev.86, 681696. 10.1021/cr00074a002

  • 37

    Davidson E. R. (1972). Properties and uses of natural orbitals. Rev. Mod. Phys.44, 451464. 10.1103/revmodphys.44.451

  • 38

    Díaz-Tinoco M. Dolgounitcheva O. Zakrzewski V. G. Ortiz J. V. (2016). Composite electron propagator methods for calculating ionization energies. J. Chem. Phys.144, 224110. 10.1063/1.4953666

  • 39

    Dral P. O. Wu X. Thiel W. (2019). Semiempirical quantum-chemical methods with orthogonalization and dispersion corrections. J. Chem. Theory Comput.15, 17431760. 10.1021/acs.jctc.8b01265

  • 40

    Dunning T. H. Jr . (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys.90, 10071023. 10.1063/1.456153

  • 41

    Edmiston C. Krauss M. (1965). Configuration-interaction calculation of H3 and H2. J. Chem. Phys.42, 11191120. 10.1063/1.1696050

  • 42

    Edmiston C. Ruedenberg K. (1963). Localized atomic and molecular orbitals. Rev. Mod. Phys.35, 457464. 10.1103/revmodphys.35.457

  • 43

    Elstner M. Frauenheim T. Kaxiras E. Seifert G. Suhai S. (2000). A self-consistent charge density-functional based tight-binding scheme for large biomolecules. Phys. Status Solidi B217, 357376. 10.1002/(sici)1521-3951(200001)217:1<357::aid-pssb357>3.0.co;2-j

  • 44

    Elstner M. Seifert G. (2014). Density functional tight binding. Philos. Trans. A Math. Phys. Eng. Sci.372, 20120483. 10.1098/rsta.2012.0483

  • 45

    Eriksen J. J. Baudin P. Ettenhuber P. Kristensen K. Kjærgaard T. Jørgensen P. (2015). Linear-scaling coupled cluster with perturbative triple excitations: The divide–expand–consolidate CCSD (T) model. J. Chem. Theory Comput.11, 29842993. 10.1021/acs.jctc.5b00086

  • 46

    Eriksen J. J. Jørgensen P. Gauss J. (2015). On the convergence of perturbative coupled cluster triples expansions: error cancellations in the CCSD (T) model and the importance of amplitude relaxation. J. Chem. Phys.142, 014102. 10.1063/1.4904754

  • 47

    Eriksen J. J. Kristensen K. Kjærgaard T. Jørgensen P. Gauss J. (2014). A Lagrangian framework for deriving triples and quadruples corrections to the CCSD energy. J. Chem. Phys.140, 064108. 10.1063/1.4862501

  • 48

    Eriksen J. J. Matthews D. A. Jørgensen P. Gauss J. (2015). Communication: the performance of non-iterative coupled cluster quadruples models. J. Chem. Phys.143, 041101. 10.1063/1.4927247

  • 49

    Ettenhuber P. Baudin P. Kjærgaard T. Jørgensen P. Kristensen K. (2016). Orbital spaces in the divide-expand-consolidate coupled cluster method. J. Chem. Phys.144 (16), 164116. 10.1063/1.4947019

  • 50

    Ettenhuber P. (2023). ScaTeLib - a scalable tensor library.

  • 51

    Favier G. de Almeida A. L. (2014). Overview of constrained PARAFAC models. EURASIP J. Adv. Signal Process.142. 10.1186/1687-6180-2014-142

  • 52

    Fedorov D. G. (2017). The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications. WIREs Comput. Mol. Sci.,7 (6), e1322. 10.1002/wcms.1322

  • 53

    Fedorov D. G. Pham B. Q. (2023). Multi-level parallelization of quantum-chemical calculations. J. Chem. Phys.158 (16), 164106. 10.1063/5.0144917

  • 54

    Foster I. (1995). Designing and building parallel programs: Concepts and tools for parallel software engineering.

  • 55

    Friedrich J. Dolg M. (2009). Fully automated incremental evaluation of MP2 and CCSD (T) energies: application to water clusters. J. Chem. Theory Comput.5, 287294. 10.1021/ct800355e

  • 56

    Friedrich J. Hänchen J. (2013). Incremental CCSD(T)(F12*)|MP2: A black box method to obtain highly accurate reaction energies. J. Chem. Theory Comput.9, 53815394. 10.1021/ct4008074

  • 57

    Frisch M. J. Pople J. A. Binkley J. S. (1984). Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys.80, 32653269. 10.1063/1.447079

  • 58

    Frisch M. J. Trucks G. W. Schlegel H. B. Scuseria G. E. Robb M. A. Cheeseman J. R. et al (2021). Gaussian development version revision. J15.

  • 59

    Fung V. Zhang J. Juarez E. Sumpter B. G. (2021). Benchmarking graph neural networks for materials chemistry. Npj Comput. Mater. 7 (1), 18.

  • 60

    Gonzalez-Escribano A. Llanos D. R. Orden D. Palop B. (2006). Parallelization alternatives and their performance for the convex hull problem. Appl. Math. Model.30, 563577. 10.1016/j.apm.2005.05.022

  • 61

    Götz A. W. Williamson M. J. Xu D. Poole D. Le Grand S. Walker R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Gen. born J. Chem. Theory Comput.8, 15421555. 10.1021/ct200909j

  • 62

    Grimme S. Antony J. Ehrlich S. Krieg H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.132, 154104. 10.1063/1.3382344

  • 63

    Gyevi-Nagy L. Kállay M. Nagy P. R. (2021). Accurate reduced-cost CCSD(T) energies: Parallel implementation, benchmarks, and large-scale applications. J. Chem. Theory Comput.17, 860878. 10.1021/acs.jctc.0c01077

  • 64

    Gyevi-Nagy L. Kállay M. Nagy P. R. (2019). Integral-direct and parallel implementation of the CCSD(T) method: algorithmic developments and large-scale applications. J. Chem. Theory Comput.16, 366384. 10.1021/acs.jctc.9b00957

  • 65

    Hagebaum-Reignier D. Girardi R. Carissan Y. Humbel S. (2007). Hückel theory for Lewis structures: hückel–Lewis configuration interaction (HL-CI). J. Mol. Struct. THEOCHEM.817, 99109. 10.1016/j.theochem.2007.04.026

  • 66

    Haghighatlari M. Hachmann J. (2019). Advances of machine learning in molecular modeling and simulation. Curr. Opin. Chem. Eng.23, 5157. 10.1016/j.coche.2019.02.009

  • 67

    Hampel C. Werner H. J. (1996). Local treatment of electron correlation in coupled cluster theory. J. Chem. Phys.104, 62866297. 10.1063/1.471289

  • 68

    Harris F. E. (1977). Coupled-cluster method for excitation energies. Int. J. Quantum Chem.12, 403411. 10.1002/qua.560120848

  • 69

    Hasanein A. A. Evans M. W. (1996). Computational methods in quantum chemistry, 2.

  • 70

    Häser M. (1993). Møller-Plesset (MP2) perturbation theory for large molecules Theor. Chim. Acta87, 147173.

  • 71

    Hättig C. Hellweg A. Köhn A. (2006). Distributed memory parallel implementation of energies and gradients for second-order Møller–Plesset perturbation theory with the resolution-of-the-identity approximation. Phys. Chem. Chem. Phys.8, 1159. 10.1039/b515355g

  • 72

    Hättig C. Weigend F. (2000). CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J. Chem. Phys.113, 51545161. 10.1063/1.1290013

  • 73

    Head-Gordon M. R. Rudolph J. Oumi M Lee T. J. (1994). A doubles correction to electronic excited states from configuration interaction in the space of single substitutions. Chem. Phys. Lett.219, 2129. 10.1016/0009-2614(94)00070-0

  • 74

    Hehre W. J. Stewart R. F. Pople J. A. (1969). Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys.51, 26572664. 10.1063/1.1672392

  • 75

    Helgaker T. Coriani S. Jørgensen P. Kristensen K. Olsen J. Ruud K. (2012). Recent advances in wave function-based methods of molecular-property calculations. Chem. Rev.112 (1), 543631. 10.1021/cr2002239

  • 76

    Helgaker T. Jørgensen P. Olsen J. (2000). Molecular electronic-structure theory.

  • 77

    Helmich B. Hättig C. (2014). A pair natural orbital based implementation of ADC(2)-x: Perspectives and challenges for response methods for singly and doubly excited states in large molecules Comput. Theor. Chem.1040, 1041 3544.

  • 78

    Herbert J. M. (2019). Fantasy versus reality in fragment-based quantum chemistry. J. Chem. Phys.151, 170901. 10.1063/1.5126216

  • 79

    Hillers-Bendtsen A. E. Bykov D. Barnes A. Liakh D. Corzo H. H. Olsen J. et al (2023). Massively parallel GPU enabled third-order cluster perturbation excitation energies for cost-effective large scale excitation energy calculationsJ. Chem. Phys.158 (14), 144111, 10.1063/5.0142780

  • 80

    Hillers-Bendtsen A. E. Høyer N. M Kjeldal F. Ø Mikkelsen K. V. Olsen J et al (2022). Cluster perturbation theory. VIII. First order properties for a coupled cluster state. J. Chem. Phys.157, 024108. 10.1063/5.0082585

  • 81

    Hitchcock F. L. (1927). The expression of a tensor or a polyadic as a sum of products. J. Math. Phys.6, 164189. 10.1002/sapm192761164

  • 82

    Hoy E P. Mazziotti D. A. (2015). Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure. J. Chem. Phys.143, 064103. 10.1063/1.4928064

  • 83

    Høyer N. M. Kjeldal F. Ø. Hillers B. Erbs A Mikkelsen K. V. Olsen J. et al (2022). Cluster perturbation theory. VI. Ground-state energy series using the Lagrangian. J. Chem. Phys.157, 024106. 10.1063/5.0082583

  • 84

    Høyvik I. M. Jansik B. Jørgensen P. (2012). Orbital localization using fourth central moment minimization. J. Chem. Phys.137, 224114. 10.1063/1.4769866

  • 85

    Høyvik I. M. Jørgensen P. (2016). Characterization and generation of local occupied and virtual Hartree–Fock orbitals. Chem. Rev.116, 33063327. 10.1021/acs.chemrev.5b00492

  • 86

    Høyvik I. M. Kristensen K. Jansík B. Jørgensen P. (2012). The divide-expand-consolidate family of coupled cluster methods: numerical illustrations using second order møller-Plesset perturbation theory. J. Chem. Phys.136, 014105. 10.1063/1.3667266

  • 87

    Høyvik I. M. Kristensen K. Kjærgaard T. Jørgensen P. (2014). A perspective on the localizability of Hartree–Fock orbitals. Theor. Chem. Acc. 133, 1417. 10.1007/s00214-013-1417-x

  • 88

    Ishikawa T. Kuwata K. (2012). RI-MP2 gradient calculation of large molecules using the fragment molecular orbital method. J. Phys. Chem. Lett.3, 375379. 10.1021/jz201697x

  • 89

    Jakobsen S. Kristensen K. Jensen F. (2013). Electrostatic potential of insulin: exploring the limitations of density functional theory and force field methods. J. Chem. Theory Comput.9, 39783985. 10.1021/ct400452f

  • 90

    Jansík B. Høst S. Kristensen K. Jørgensen P. (2011). Local orbitals by minimizing powers of the orbital variance. J. Chem. Phys.134, 194104. 10.1063/1.3590361

  • 91

    Jha A. Nottoli M. Mikhalev A. Quan C. Stamm B. (2022). Linear scaling computation of forces for the domain-decomposition linear Poisson–Boltzmann method. J. Chem. Phys. 158 (10), 104105. 10.1063/5.0141025

  • 92

    Kapuy E. Csépes Z. Kozmutza C. (1983). Application of the many-body perturbation theory by using localized orbitals. Int. J. Quantum Chem.23, 981990. 10.1002/qua.560230321

  • 93

    Keith J. A. Vassilev-Galindo V. Cheng B. Chmiela S. Gastegger M. Muüller K. R. et al (2021). Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev.121, 98169872. 10.1021/acs.chemrev.1c00107

  • 94

    Khoromskaia V. Khoromskij B. N. (2015). Tensor numerical methods in quantum chemistry: from Hartree–Fock to excitation energies. Phys. Chem. Chem. Phys.17, 3149131509. 10.1039/c5cp01215e

  • 95

    Kirtman B. (1995). Local quantum chemistry: the local space approximation for Møller–Plesset perturbation theory. Int. J. Quantum Chem.55 (2), 103108. 10.1002/qua.560550204

  • 96

    Kjærgaard T. Baudin P. Bykov D. Eriksen J. J. Ettenhuber P. Kristensen K. et al (2017). Massively parallel and linear-scaling algorithm for second-order Møller–Plesset perturbation theory applied to the study of supramolecular wires. Comput. Phys. Commun.212, 152160. 10.1016/j.cpc.2016.11.002

  • 97

    Kjærgaard T. Baudin P. Bykov D. Kristensen K. Jørgensen P. (2017). The divide–expand–consolidate coupled cluster scheme Wiley Interdiscip. Rev. Comput. Mol. Sci.7 e1319.

  • 98

    Kjærgaard T. (2017). The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. J. Chem. Phys.146, 044103. 10.1063/1.4973710

  • 99

    Kleier D. A. Halgren T. A. Hall J. H. Lipscomb W. N. (1974). Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods. J. Chem. Phys.61, 39053919. 10.1063/1.1681683

  • 100

    Kolda T. G. Bader B. W. (2009). Tensor decompositions and applications. SIAM Rev.51 (3), 455500. 10.1137/07070111x

  • 101

    Krause C. Werner H. J. (2012). Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals. Phys. Chem. Chem. Phys.14, 75917604. 10.1039/c2cp40231a

  • 102

    Krishnan R. B. J. S. Binkley J. S. Seeger R Pople J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys.72, 650654. 10.1063/1.438955

  • 103

    Krishnan R. Pople J. A. (1978). Approximate fourth-order perturbation theory of the electron correlation energy. Int. J. Quantum Chem.14, 91100. 10.1002/qua.560140109

  • 104

    Kristensen K. Eriksen J. J. Matthews D. A. Olsen J. Jørgensen P. (2016). A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation. J. Chem. Phys.144, 064103. 10.1063/1.4941605

  • 105

    Kristensen K. Høyvik I. M. Jansík B. Jørgensen P. Kjærgaard T. Reine S. et al (2012). MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme. Phys. Chem. Chem. Phys.14, 1570615714. 10.1039/c2cp41958k

  • 106

    Kristensen K. Jørgensen P. Jansík B. Kjærgaard T. Reine S. (2012). Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme. J. Chem. Phys.137, 114102. 10.1063/1.4752432

  • 107

    Kristensen K. Ziółkowski M. Jansík B. Kjærgaard T. Jørgensen P. (2011). A locality analysis of the divide–expand–consolidate coupled cluster amplitude equations. J. Chem. Theory Comput.7, 16771694. 10.1021/ct200114k

  • 108

    Kurashige Y. Yang J. Chan G. K. L. Manby F. R. (2012). Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory. J. Chem. Phys.136 (12), 124106. 10.1063/1.3696962

  • 109

    Kutzelnigg W. (2007). What I like about Hückel theory. J. Comput. Chem.28, 2534. 10.1002/jcc.20470

  • 110

    Article title Frontiers in neuroscience (2013) Article title Frontiers in neuroscience301012710134.

  • 111

    Levine I. N. Busch D. H. Shull H. (2009). Quantum chemistry, 6.

  • 112

    Li R. R. Liebenthal M. D. De Prince Eugene A. (2021). Challenges for variational reduced-density-matrix theory with three-particle N-representability conditions. J. Chem. Phys.155, 174110. 10.1063/5.0066404

  • 113

    Liakos D. G. Sparta M. Kesharwani M. K. Martin J. M. L. Neese F. (2015). Exploring the accuracy limits of local pair natural orbital coupled-cluster theory. J. Chem. Theory Comput.11, 15251539. 10.1021/ct501129s

  • 114

    Lin N. Marianetti C. A. Millis A. J. Reichman D. R. (2011). Dynamical mean-field theory for quantum chemistry. Phys. Rev. Lett.106, 096402. 10.1103/physrevlett.106.096402

  • 115

    Lipparini F. Stamm B. Canc‘es E. Maday Y. Mennucci B. (2013). Fast domain decomposition algorithm for continuum solvation models: energy and first derivatives. J. Chem. Theory Comput.9, 36373648. 10.1021/ct400280b

  • 116

    Liu W. (2020). Essentials of relativistic quantum chemistry. J. Chem. Phys.152, 180901. 10.1063/5.0008432

  • 117

    Löwdin P. O. (1958). Correlation problem in many-electron quantum mechanics I. Review of different approaches and discussion of some current ideas. Adv. Chem. Phys.207-322.

  • 118

    Löwdin P. O. (1955). Quantum theory of many-particle systems. II. Study of the ordinary Hartree-Fock approximation. Phys. Rev.97, 14901508. 10.1103/physrev.97.1490

  • 119

    Löwdin P. O. (1955). Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev.97, 14741489. 10.1103/physrev.97.1474

  • 120

    Luo L. Straatsma T. Suarez L. E. A Broer R. Bykov D. et al (2020). Pre-exascale accelerated application development: The ORNL Summit experience, IBM J. Res. Dev.64, 111. 10.1147/jrd.2020.2965881

  • 121

    Lyakh D. I. (2023). TAL-SH: Tensor algebra library for shared memory computers.

  • 122

    Ma Y. Li Z. Y. Chen X. Ding B. Li N. Lu T. et al (2023). Machine-learning assisted scheduling optimization and its application in quantum chemical calculations. J. Comput. Chem.44, 11741188. 10.1002/jcc.27075

  • 123

    Maslow A. H. (1966). The psychology of science: A reconnaissance.

  • 124

    Menezes F. Kats D. Werner H. J. (2016). Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2). J. Chem. Phys.145, 124115. 10.1063/1.4963019

  • 125

    Mester D. Nagy P. R. Kállay M. (2019). Reduced-Scaling correlation methods for the excited states of large molecules: implementation and benchmarks for the second-order algebraic-diagrammatic construction approach. J. Chem. Theory Comput.15, 61116126. 10.1021/acs.jctc.9b00735

  • 126

    Mitxelena I. Piris M. (2022). Benchmarking GNOF against FCI in challenging systems in one, two, and three dimensions. J. Chem. Phys.156, 214102. 10.1063/5.0092611

  • 127

    Moawad Y. Vanderbauwhede W. Steijl R. (2022). Investigating hardware acceleration for simulation of CFD quantum circuits. Front. Mech. Eng.8. 10.3389/fmech.2022.925637

  • 128

    Møller C. Plesset M. S. (1934). Note on an approximation treatment for many-electron systems. Phys. Rev.46, 618622. 10.1103/physrev.46.618

  • 129

    Monari A. Rivail J. L. Assfeld X. (2013). Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Acc. Chem. Res.46, 596603. 10.1021/ar300278j

  • 130

    Nagy B. Jensen F. (2017). Basis sets in quantum chemistry, 93149.

  • 131

    Nagy P. R. Kállay M. (2019). Approaching the basis set limit of CCSD(T) energies for large molecules with local natural orbital coupled-cluster methods. J. Chem. Theory Comput.15, 52755298. 10.1021/acs.jctc.9b00511

  • 132

    Neese F. Wennmohs F. Hansen A. (2009). Efficient and accurate local approximations to coupled-electron pair approaches: an attempt to revive the pair natural orbital method. J. Chem. Phys.130, 114108. 10.1063/1.3086717

  • 133

    Neese F. Wennmohs F. Becker U. Riplinger C. (2020). The ORCA quantum chemistry program package. J. Chem. Phys.152, 224108. 10.1063/5.0004608

  • 134

    Nesbet R. K. (1955). Configuration interaction in orbital theories. Proc. R. Soc. Lond. A Math. Phys. Sci.230, 312321.

  • 135

    Nikodem A. Matveev A. V. Soini T. M. Rösch N. (2014). Load balancing by work-stealing in quantum chemistry calculations: application to hybrid density functional methods. Int. J. Quantum Chem.114, 813822. 10.1002/qua.24677

  • 136

    Nottoli M. Stamm B. Scalmani G. Lipparini F. (2019). Quantum calculations in solution of energies, structures, and properties with a domain decomposition polarizable continuum model. J. Chem. Theory Comput.15, 60616073. 10.1021/acs.jctc.9b00640

  • 137

    Olsen J. Erbs A. Kjeldal F. Ø. Høyer N. M Mikkelsen K. V. et al (2022). Cluster perturbation theory. VII. The convergence of cluster perturbation expansions. J. Chem. Phys.157, 024107. 10.1063/5.0082584

  • 138

    Olsen J. M. H. List N. H. Kristensen K. Kongsted J. (2015). Accuracy of protein embedding potentials: An analysis in terms of electrostatic potentials. J. Chem. Theory Comput.11, 18321842. 10.1021/acs.jctc.5b00078

  • 139

    Oseledets I. V. (2011). Tensor-train decomposition. SIAM J. Sci. Comput.33 (5), 22952317. 10.1137/090752286

  • 140

    Ozog D. Hammond J. R. Dinan J. Balaji P. Shende S. Malony A. (2013). “Inspector-executor load balancing algorithms for block-sparse tensor contractions,” in 2013 42nd International conference on parallel processing, 3039. 10.1109/ICPP.2013.12

  • 141

    Patil U. Shedge R. (2013). Improved hybrid dynamic load balancing algorithm for distributed environment. Int. J. Sci. Res. Publ.3, 1.

  • 142

    Paudics A. Hessz D. Bojtár M. Bitter I. Horváth V. Kállay M. et al (2022). A pillararene-based indicator displacement assay for the fluorescence detection of vitamin B1. Sensors Actuators B Chem.369, 132364. 10.1016/j.snb.2022.132364

  • 143

    Pawłowski F. Olsen J. Jørgensen P. (2019a). Cluster perturbation theory. II. Excitation energies for a coupled cluster target state. J. Chem. Phys.150, 134109. 10.1063/1.5053167

  • 144

    Pawłowski F. Olsen J. Jørgensen P. (2019b). Cluster perturbation theory. I. Theoretical foundation for a coupled cluster target state and ground-state energies. J. Chem. Phys.150, 134108. 10.1063/1.5004037

  • 145

    Pawłowski F. Olsen J. Jørgensen P. (2019c). Cluster perturbation theory. IV. Convergence of cluster perturbation series for energies and molecular properties. J. Chem. Phys.150, 134111. 10.1063/1.5053622

  • 146

    Pawłowski F. Olsen J. Jørgensen P. (2019d). Cluster perturbation theory. V. Theoretical foundation for cluster linear target states. J. Chem. Phys.150, 134112. 10.1063/1.5053627

  • 147

    Phan A. H. Tichavský P. Cichocki A. (2013). Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations. IEEE Trans. Signal Process.61, 48344846. 10.1109/tsp.2013.2269903

  • 148

    Pinski P. Neese F. (2018). Communication: exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). J. Chem. Phys.148, 031101. 10.1063/1.5011204

  • 149

    Pipek J. Mezey P. G. (1989). Pair natural orbitals: a concept for simplifying Hartree–Fock and CI wavefunctions. J. Chem. Phys.90, 49164926. 10.1063/1.456588

  • 150

    Pople J. A. (1999). Nobel lecture: Quantum chemical models. Mod. Phys.71, 12671274. 10.1103/revmodphys.71.1267

  • 151

    Pople J. A. Binkley J. S. Seeger R. (1976). Theoretical models incorporating electron correlation. Int. J. Quantum Chem.10, 119. 10.1002/qua.560100802

  • 152

    Pulay P. Saebø S. (1986). Orbital-invariant formulation and second-order gradient evaluation in Mller-Plesset perturbation theory. Chem. Acc.69, 357368. 10.1007/bf00526697

  • 153

    Pulay P. Hamilton T. P. (1988). UHF natural orbitals for defining and starting MC-SCF calculations. J. Chem. Phys.88, 49264933. 10.1063/1.454704

  • 154

    Pulay P. (1983). Localizability of dynamic electron correlation. Chem. Phys. Lett.100, 151154. 10.1016/0009-2614(83)80703-9

  • 155

    Pyykkö P. (2012). Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem.63, 4564. 10.1146/annurev-physchem-032511-143755

  • 156

    Qiu J. Zhao Z. Wu B. Vishnu A. Song S. (2017). Enabling scalability-sensitive speculative parallelization for FSM computations. Proc. Int. Conf. Supercomput., 2.

  • 157

    Qiu Y. Zhou G. Zhang Y. Cichocki A. (2021). Canonical polyadic decomposition (CPD) of big tensors with low multilinear rank. Multimed. Tools Appl. 80, 2298723007. 10.1007/s11042-020-08711-1

  • 158

    Raghavachari K. Trucks G. W. Pople J. A. Head-Gordon M. (1989). A fifthorder perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157 (6), 479483. 10.1016/s0009-2614(89)87395-6

  • 159

    Riplinger C. Neese F. (2013). An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys.138, 034106. 10.1063/1.4773581

  • 160

    Riplinger C. Sandhoefer B. Hansen A. Neese F. (2013). Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys.139, 134101. 10.1063/1.4821834

  • 161

    Rolik Z. Szegedy L. Ladjánszki I. Ladóczki B. Kállay M. (2013). An efficient linear-scaling CCSD (T) method based on local natural orbitals. J. Chem. Phys.139, 094105. 10.1063/1.4819401

  • 162

    Russ N. J. Crawford T. D. (2004). Local correlation in coupled cluster calculations of molecular response properties. Phys. Lett.400, 104111. 10.1016/j.cplett.2004.10.083

  • 163

    Sæbø S. Almlöf J. (1989). Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett.154, 8389. 10.1016/0009-2614(89)87442-1

  • 164

    Sæbø S. Pulay P. (1985). Local configuration interaction: an efficient approach for larger molecules. Chem. Phys. Lett.113, 1318. 10.1016/0009-2614(85)85003-x

  • 165

    Saebø S. Pulay P. (1993). Local treatment of electron correlation. Annu. Rev. Phys. Chem.44, 213236. 10.1146/annurev.pc.44.100193.001241

  • 166

    Saebo S. Pulay P. (1988). The local correlation treatment. II. Implementation and tests. J. Chem. Phys.88, 18841890. 10.1063/1.454111

  • 167

    Saitow M. Uemura K. Yanai T. (2022). A local pair-natural orbital-based complete-active space perturbation theory using orthogonal localized virtual molecular orbitals. J. Chem. Phys.157, 084101. 10.1063/5.0094777

  • 168

    Schriber J. B. Evangelista F. A. (2017). Adaptive configuration interaction for computing challenging electronic excited states with tunable accuracy. J. Chem. Theory Comput.13, 53545366. 10.1021/acs.jctc.7b00725

  • 169

    Schütz M. Yang J. Frederick R. Werner H. J. (2013). The orbital-specific virtual local triples correction: OSV-L (t). J. Chem. Phys.138, 054109. 10.1063/1.4789415

  • 170

    Schwilk M. Ma Q. Köppl C. Werner H. J. (2017). Scalable electron correlation methods. 3. Efficient and accurate parallel local coupled cluster with pair natural orbitals (PNO-LCCSD). J. Chem. Theory Comput.13, 36503675. 10.1021/acs.jctc.7b00554

  • 171

    Semidalas E. Martin J. M. L. (2022). The MOBH35 metal–organic barrier heights reconsidered: Performance of local-orbital coupled cluster approaches in different static correlation regimes. J. Chem. Theory Comput.18, 883898. 10.1021/acs.jctc.1c01126

  • 172

    Shang H. Shen L. Fan Y. Xu Z. Guo C. Liu J. et al (2022). Large-Scale Simulation of Quantum Computational Chemistry on a New Sunway Supercomputer. SC22: Int. Conf. High Perform. Comput. Netw. Storage Anal. 114. 10.1109/SC41404.2022.00019

  • 173

    Shao Y. Gan Z. Epifanovsky E. Gilbert A. T. B. Wormit M Kussmann J et al (2015). Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys.113, 184215. 10.1080/00268976.2014.952696

  • 174

    Sharapa D. I. Genaev A Cavallo L. Minenkov Y. (2019). A robust and cost-efficient scheme for accurate conformational energies of organic molecules. ChemPhysChem20, 92102. 10.1002/cphc.201801063

  • 175

    Sho S. Odanaka S. (2019). Parallel domain decomposition methods for a quantum-corrected drift–diffusion model for MOSFET devices. Phys. Commun.237, 816. 10.1016/j.cpc.2018.10.029

  • 176

    Simons J. Nichols J. (1997). Quantum mechanics in chemistry.

  • 177

    Sitkiewicz S. P. Rodriguez-Mayorga M. Luis Josep M. Matito E. (2019). Partition of optical properties into orbital contributions. Phys. Chem. Chem. Phys.21, 1538015391. 10.1039/c9cp02662b

  • 178

    Sparta M. Retegan M. Pinski P. Riplinger C. Becker U. Neese F. (2017). Multilevel approaches within the local pair natural orbital framework. J. Chem. Theory Comput.13, 31983207. 10.1021/acs.jctc.7b00260

  • 179

    Stegeman A. (2006). Degeneracy in Candecomp/Parafac explained for p×p× 2 arrays of rank p + 1 or higher. Psychometrika71, 483501.

  • 180

    Stoychev G. L. Auer A. A. Gauss J. Neese F. (2021). DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. J. Chem. Phys.154, 164110. 10.1063/5.0047125

  • 181

    Su H. C. Jiang H. Zhang B. (2007). Synchronization on Speculative Parallelization of Many-Particle Collision Simulation. World Congr. Eng. Comput. Sci.

  • 182

    Subotnik J. E. Head-Gordon M. (2005). A local correlation model that yields intrinsically smooth potential-energy surfaces. J. Chem. Phys.123, 064108. 10.1063/1.2000252

  • 183

    Surján P. R. (1999). “An introduction to the theory of geminals,” in Correlation and localization, 6388.

  • 184

    Szabo A. Ostlund N. S. (2012). Modern quantum chemistry: Introduction to advanced electronic structure theory.

  • 185

    Szabó P. B. Csóka J. Kállay M. Nagy P. R. (2021). Linear-Scaling open-shell MP2 approach Algorithm benchmarks and large-scale applications, J. Chem. Theory Comput.17, 28862905. 10.1021/acs.jctc.1c00093

  • 186

    Tew D. P. Klopper W. Helgaker T. (2007). Electron correlation: the many-body problem at the heart of chemistry. J. Comput. Chem.28, 13071320. 10.1002/jcc.20581

  • 187

    Tew D. P. (2019). Principal domains in local correlation theory. J. Chem. Theory Comput.15, 65976606. 10.1021/acs.jctc.9b00619

  • 188

    Thiel W (2014). Semiempirical quantum–chemical methods. Rev. Comput. Mol. Sci.4, 145157. 10.1002/wcms.1161

  • 189

    Titov A. V. Ufimtsev I. S. Luehr N. Martinez T. J. (2013). Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 9 (1), 213221. 10.1021/ct300321a

  • 190

    Tucker L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika31, 279311. 10.1007/BF02289464

  • 191

    Unke O. Bogojeski M. Gastegger M. Geiger M. Smidt T. Müller K. R. (2021). E(3)-equivariant prediction of molecular wavefunctions and electronic densities. Adv. Neural Inf. Process. Syst. 341443414447.

  • 192

    Vahtras O. Almlöf J. Feyereisen M. W. (1993). Integral approximations for LCAO-SCF calculations. Chem. Phys. Lett.213, 514518. 10.1016/0009-2614(93)89151-7

  • 193

    Valiev M. Bylaska E. J. Govind N Kowalski K Straatsma T. P. Van Dam H. J. J. et al (2010). NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Phys. Commun.181, 14771489. 10.1016/j.cpc.2010.04.018

  • 194

    Vannieuwenhoven N. Meerbergen K. Vandebril R. (2015). Computing the gradient in optimization algorithms for the CP decomposition in constant memory through tensor blocking. SIAM J. Sci. Comput.37 (3), C415C438. 10.1137/14097968x

  • 195

    Wang B. Yang K. R. Xu X. Isegawa M. Leverentz H. R. Truhlar D. G. (2014). Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates. Accounts Chem. Res.47, 27312738. 10.1021/ar500068a

  • 196

    Wang H. Neese C. F. Morong C. P. Kleshcheva M. Oka T. (2013) High-Resolution near-infrared spectroscopy of and its deuterated isotopologuesJ. Phys. Chem. A11799089918.

  • 197

    Wang Y. M. Hättig C. Reine S. Valeev E. Kjærgaard T. Kristensen K. (2016). Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. J. Chem. Phys.144, 204112. 10.1063/1.4951696

  • 198

    Wang Y. Ni Z. Neese F. Li W. Guo Y. Li S. (2022). Cluster-in-Molecule method combined with the domain-based local pair natural orbital approach for electron correlation calculations of periodic systems. J. Chem. Theory Comput.18, 65106521. 10.1021/acs.jctc.2c00412

  • 199

    Werner H. J. (1995). “Problem decomposition in quantum chemistry,” in Domainbased parallelism and problem decomposition methods in computational science and engineering (SIAM), 239261. 10.1137/1.9781611971507.ch14

  • 200

    Westermayr J. Gastegger M. Schütt K. T. Reinhard J. (2021). Perspective on integrating machine learning into computational chemistry and materials science. J. Chem. Phys.154, 230903. 10.1063/5.0047760

  • 201

    Woolley R. G. Sutcliffe B. T. (1977). Molecular structure and the born—oppenheimer approximation. Phys. Lett.45, 393398. 10.1016/0009-2614(77)80298-4

  • 202

    Xie Z. Y. Jiang H. C. Chen Q. N. Weng Z. Y. Xiang T. (2009). Second renormalization of tensor-network states. Phys. Rev. Lett.103, 160601. 10.1103/physrevlett.103.160601

  • 203

    Yang J. Chan G. Frederick R. Schütz M. Werner H. J. (2012). The orbital-specific-virtual local coupled cluster singles and doubles method. J. Chem. Phys.136, 144105. 10.1063/1.3696963

  • 204

    Yang J. Kurashige Y. Manby Frederick R. Chan G. K. L. (2011). Tensor factorizations of local second-order Møller–Plesset theory. J. Chem. Phys.134, 044123. 10.1063/1.3528935

  • 205

    Yates K. (2012). Hückel molecular orbital theory.

  • 206

    Zhang I. Y Grüneis A. (2019). Coupled cluster theory in materials science. Front. Mater.6. 10.3389/fmats.2019.00123

  • 207

    Zhang Q. Dwyer T. J. Tsui V. Case D. A. Cho J. Dervan P. B. et al (2004). NMR structure of a cyclic polyamide- DNA complex. J. Am. Chem. Soc.126, 79587966. 10.1021/ja0373622

  • 208

    Ziółkowski M. Jansík B. Kjærgaard T. Jørgensen P. (2010). Linear scaling coupled cluster method with correlation energy based error control. J. Chem. Phys.133, 014107. 10.1063/1.3456535

Summary

Keywords

coupled cluster theory, divide-expand-consolidate coupled cluster framework, cluster perturbation theory, excitation energies, tetrahydrocannabinol, deoxyribonucleic acid

Citation

Corzo HH, Hillers-Bendtsen AE, Barnes A, Zamani AY, Pawłowski F, Olsen J, Jørgensen P, Mikkelsen KV and Bykov D (2023) Corrigendum: Coupled cluster theory on modern heterogeneous supercomputers. Front. Chem. 11:1256510. doi: 10.3389/fchem.2023.1256510

Received

10 July 2023

Accepted

11 July 2023

Published

15 August 2023

Approved by

Frontiers Editorial Office, Frontiers Media SA, Switzerland

Volume

11 - 2023

Updates

Copyright

*Correspondence: Dmytro Bykov,

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Cite article

Copy to clipboard


Export citation file


Share article

Article metrics