ORIGINAL RESEARCH article
Front. Psychol.
Sec. Cognition
Volume 16 - 2025 | doi: 10.3389/fpsyg.2025.1570929
Examining Cognitive Load in Human-Machine Collaborative Translation: Insights from Eye-Tracking Experiments of Chinese-English Translation
Provisionally accepted- Jinjiang College, Sichuan University, Meishan, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
With the development of artificial intelligence and computer science, human-computer collaborative translation (HMCT) mode has gradually become a research hotspot in the field of English translation. The purpose of this study was to explore the cognitive load characteristics of translators in the process of human-computer collaborative translation through eye tracking experiments of Chinese-English translation. Based on a 2×2 hybrid design, the participants' eye movements were analyzed under the conditions of simple, medium and complex texts through two tasks, human translation and human-computer collaborative translation. The study involved 30 master's students or translators in translation who used Tobii Pro Glasses2 to record eye tracking data in real time, focusing on fixation time, regressionness, saccade and fixation point to reveal the impact of different Chinese-English translation tasks and text types on cognitive load. The experimental results show that the fixation time, the numbers of regressions, fixations and saccades of human translation are significantly higher than those of human-computer collaborative translation, especially in complex text tasks. At the same time, the numbers of regressions and fixation time increased significantly with the increase of task complexity in both groups, and the human translation group showed a higher cognitive load in complex tasks. This study finds that the cognitive load of translators in the process of human-machine collaborative translation shows phased changes, especially when the output quality of machine translation is poor, translators need more cognitive resources to correct. The impact of complex tasks on cognitive load is even more significant, and human translation requires more cognitive effort on the part of translators. Eye tracking data analysis provides empirical support for understanding the cognitive mechanisms in the translation process. For the first time, this study systematically explored the cognitive load characteristics of human-computer collaborative translation through eye tracking technology, filling the research gap in this field in the existing literature. The results of this study not only provide a theoretical basis for optimizing translation tools and designing more efficient translation processes, but also provide a new perspective for cognitive load management in translation teaching and practice.
Keywords: human-computer translation, eye tracking experiments, Rank sum test, Data fitting, Cognitive Load
Received: 04 Feb 2025; Accepted: 10 Oct 2025.
Copyright: © 2025 Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Lei Chen, leiechoechoecho@163.com
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.