METHODS article
Front. Psychol.
Sec. Psychology of Language
Volume 16 - 2025 | doi: 10.3389/fpsyg.2025.1591408
This article is part of the Research TopicRethinking the Embodiment of Language: Challenges and Future HorizonsView all articles
Large Language Models Prompt Engineering as a Method for Embodied Cognitive Linguistic Representation: A Case Study of Political Metaphors in Trump's Discourse
Provisionally accepted- National University of Defense Technology, Changsha, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Embodied-Cognitive Linguistics inherits and further develops the core concepts of Cognitive Linguistics, maintaining a focus on embodied cognition and conceptual metaphors. It emphasizes that language is not merely a cognitive phenomenon but also a product of human social interactions and economic conditions. From this perspective, metaphors extend beyond their simple linguistic representation and become essential structures of human cognitive expression. Political metaphors, in particular, are instrumental in shaping public ideology and emotional engagement, a phenomenon clearly demonstrated in the political speeches of Donald Trump. With rapid advancements in large language models (LLMs) technology, traditional approaches to metaphor identification are undergoing significant transformation. By leveraging the advanced text parsing and generation capabilities of LLMs, new opportunities emerge for the automatic detection and nuanced analysis of political metaphors. This study employs a critical metaphor analysis (CMA) framework, integrated with a chain-of-thought-based prompt engineering (PE) technique, utilizing the ChatGPT-4.0 Python environment to identify and examine metaphors in Trump's speeches. The results reveal that Trump strategically employs metaphors derived from diverse source domains-such as Movement and Direction, Illness and Health and Force-to resonate emotionally with his audience. Methodologically, while LLMs demonstrate considerable strengths in analyzing political discourse, challenges remain in areas such as semantic differentiation and expression. Future research will focus on optimizing these models, conducting comparative analyses with traditional methods, and exploring their applicability in cross-cultural contexts, with the goal of providing more precise and effective tools for both natural language processing (NLP) and political linguistics research.
Keywords: Cognitive Linguistics, Large Language Model, Metaphor identification, Political discourse, Embodied cognition
Received: 11 Mar 2025; Accepted: 26 May 2025.
Copyright: © 2025 Meng, Li and Sun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Jinhua Sun, National University of Defense Technology, Changsha, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.