Impact Factor 4.298

The 1st most cited journal in Plant Sciences

Methods ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Plant Sci. | doi: 10.3389/fpls.2018.00219

PlantSize offers an affordable, non-destructive method to measure plant size and color in vitro.

Dóra Faragó1, László Sass1,  Ildikó Valkai1,  Norbert Andrási1 and  László Szabados1*
  • 1Biological Research Centre (MTA), Hungary

Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are however expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9) mutant. While the technology was developed with Arabidopsis plants, it is suitable to characterize plants of other species including crops, in a simple, affordable and fast way. PlantSize is publicly available (

Keywords: Arabidopsis thaliana, PlantSize, color imaging, Rosette size, Chlorophyll content, Anthocyanin content, heat shock factor A4A, stress responses.

Received: 12 Oct 2017; Accepted: 05 Feb 2018.

Edited by:

Sebastien C. Carpentier, KULeuven, Belgium

Reviewed by:

Antonio Ferrante, Università degli Studi di Milano, Italy
Magdalena M. Julkowska, King Abdullah University of Science and Technology, Saudi Arabia  

Copyright: © 2018 Faragó, Sass, Valkai, Andrási and Szabados. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. László Szabados, Biological Research Centre (MTA), Szeged, Hungary,