Impact Factor 3.678

The world's most-cited Plant Sciences journal

Methods ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Plant Sci. | doi: 10.3389/fpls.2018.01409

Non-destructive plant morphometric and color analyses using an optoelectronic 3D color microscope

  • 1Departamento de Biotecnologia y Bioquimica, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico
  • 2Ingenieria Genetica, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico
  • 3Unidad de Genomica Avanzada, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico

Gene function discovery in plants, as other plant science quests, is aided by tools that image, document and measure plant phenotypes. Tools that acquire images of plant organs and tissues at the microscopic level have evolved from qualitative documentation tools, to advanced tools where software-assisted analysis of images extracts quantitative information that allows statistical analyses. They are useful to perform morphometric studies that describe plant physical characteristics and quantify phenotypes, aiding gene function discovery. In parallel, non-destructive, versatile, robust, and user-friendly technologies have also been developed for surface topography analysis and quality control in the industrial manufacture sector, such as optoelectronic 3D color microscopes. These microscopes combine optical lenses, electronic image sensors, motorized stages, graphics engines and user-friendly software to allow the visualization and inspection of objects of diverse sizes and shapes from different angles. This allow the integration of different automatically obtained images along the Z axis of an object, into a single image with a large depth-of-field, or a 3D model in color. In this work we explored the performance of an optoelectronic microscope to study plant morphological phenotypes and plant surfaces in different model species. Furthermore, as a “proof-of-concept”, we included the phenotypic characterization (morphometric analyses at the organ level, color, and cell size measurements) of Arabidopsis mutant leaves. We found that the microscope tested is a suitable, practical and fast tool to routinely and precisely analyze different plant organs and tissues, producing both high-quality, sharp color images and morphometric and color data in real time. It is fully compatible with live plant tissues (no sample preparation is required) and does not require special conditions, high maintenance, nor complex training. Therefore, though barely reported in plant scientific studies, optoelectronic microscopes should emerge as convenient and useful tools for phenotypic characterization in plant sciences.

Keywords: plant phenotyping, optoelectronic 3D color microscope, plant development, digital microscopy, Plant morphometry, plant topology analysis, Plant color analysis, Arabidopsis phenotype, Liverwort

Received: 30 Apr 2018; Accepted: 05 Sep 2018.

Edited by:

Yann Guédon, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), France

Reviewed by:

Patrick Laufs, Institut National de la Recherche Agronomique (INRA), France
Nathalie Wuyts, Forschungszentrum Jülich, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HZ), Germany  

Copyright: © 2018 Lazcano-Ramirez, Durán-Medina, Gómez-Felipe, Diaz-Ramirez, Sánchez-Segura, de Folter and Marsch-Martinez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Nayelli Marsch-Martinez, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Departamento de Biotecnologia y Bioquimica, Km. 9.6 libramiento norte, carretera Irapuato-Leon, México City, 36824, Guanajuato, Mexico, Nayelli.marsch@gmail.com