The final, formatted version of the article will be published soon.
REVIEW article
Front. Plant Sci.
Sec. Crop and Product Physiology
Volume 15 - 2024 |
doi: 10.3389/fpls.2024.1504792
Advancements and Future Perspectives in Nutrient Film Technique (NFT) Hydroponic System: A Comprehensive Review and Bibliometric Analysis
Provisionally accepted- University of Bari Aldo Moro, Bari, Italy
In the context of climate change, reducing the environmental impact of agriculture has become increasingly critical. To ensure sustainable food production, it is essential to adopt cultivation techniques that maximize resource efficiency, particularly in water and nutrient usage. The Nutrient Film Technique (NFT) is one such hydroponic system, designed to optimize water and nutrient use, making it a valuable tool for sustainable agriculture. This bibliometric review examines the evolution of NFT research from 1977 to 2023, focusing on the growing interest in this method as a solution to the agricultural challenges posed by climate change. Through the analysis of 774 scientific documents, this review highlights an upward trend in NFT-related studies, with a noticeable shift from conference proceedings to peer-reviewed journal articles, particularly in recent years. Acta Horticulturae has been a leading journal in this field, underscoring the significance of early conference contributions. Lettuce and tomatoes have emerged as the primary crops studied in NFT systems, demonstrating the technique's broad applicability. Research on lettuce has primarily focused on nitrate accumulation and biofortification, aiming to improve both the nutritional quality and safety of the crop. Studies on tomatoes have explored challenges related to oxygen concentration in the nutrient solution, where innovations such as the Nutrient Drip Technique (NDT) and the New Growing System (NGS) have shown promise in addressing these issues. Other key areas of NFT research include the effects of water salinity on crop growth and the integration of NFT with aquaponics systems, highlighting its potential for sustainable, water-efficient crop production. However, challenges such as nutrient imbalances and disease management persist. This review underscores the growing relevance of NFT in the pursuit of environmentally sustainable agriculture. Continued innovation and research are essential to optimizing nutrient management, refining environmental controls, and exploring new crop varieties, thereby enhancing the potential of NFT for sustainable farming systems.
Keywords: Water use efficiency, Soilless, nutrient solution management, Climate changes, Environmental impact
Received: 01 Oct 2024; Accepted: 26 Nov 2024.
Copyright: © 2024 Palmitessa, Signore and Santamaria. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Angelo Signore, University of Bari Aldo Moro, Bari, Italy
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.