ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Systematics and Evolution
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1532782
Characterization of Ganoderma pseudoferreum mitogenome
Provisionally accepted- Hainan University, Haikou, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Red root disease in rubber trees, caused by Ganoderma pseudoferreum, is a prevalent and severe soil-borne disease in rubber tree cultivation areas. The pathogen exhibits complex infections, with multiple transmission pathways, making the disease highly concealed and difficult to diagnose in its early stages. As a result, prevention and control are challenging, posing a serious threat to rubber production. Currently, the relevant information, evolutionary trajectory, and sequence divergence of the mitochondrial genome of G. pseudoferreum remain unknown. Here, we assembled the complete mitochondrial genome of G. pseudoferreum,which is 40, 719 bp long and contains 14 protein-coding genes (PCGs), genes encoding small andlarge ribosomal subunits, 22 mitochondrial-encoded tRNAs, and four hypothetical proteins. The genomic content and characteristics, along with IPS mapping analysis and phylogenetic analysis, reveal a significant similarity between G. pseudoferreum and G. lingzhi. The results of RNA editing site analysis, codon usage bias and evolutionary pressure analysis reveal that during environmental adaptation, species of Ganoderma may alter certain key PCGs to adopt distinct evolutionary trajectories, differentiating themselves from other fungi in Basidiomycota, while leaving evolutionary traces. Our study provides new insights into the evolutionary direction and pattern of G. pseudoferreum and Ganoderma by exploring the evolutionary trajectory of mitochondrial genomes of G. pseudoferreum and Ganoderma.
Keywords: Ganoderma, Mitogenome, tRNA, speciation, phylogenomics
Received: 17 Dec 2024; Accepted: 28 Jul 2025.
Copyright: © 2025 Lu, Qin, Huo, Wang, Norvienyeku, Miao and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: WenBo Liu, Hainan University, Haikou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.