ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Functional Plant Ecology
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1534608
Assessing the Climate Change Impact on Epimedium brevicornu in China with the MaxEnt Model
Provisionally accepted- College of Life Science, China West Normal University, Nanchong, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Epimedium brevicornu is a traditional medicinal plant in China, containing rich and medically valuable extracts. In recent years, the widespread development and application of its extracts have threatened the wild population of E.brevicornu. In order to protect the population of E. brevicornu, this research employed the Maxent model to examine the influence of climate change on the geographical distribution of E. brevicornu and to forecast its potential suitable distribution in China in light of climate change scenarios. The suitable habitat for E. brevicornu is located between 25.13 °-39.50 °N and 102.46 °-118.13 °E, mainly distributed across Loess Plateau.Climate change has a significant impact on the geographic distribution of E. brevicornu, with its high suitability zone expected to increase in the future and its centroid shifts towards the southeast direction. The 2050s projections under the Shared Socioeconomic Pathways (SSP) 1-2.6 and SSP2-4.5 scenarios indicated a significant expansion of highly suitable habitats. The analysis of key environmental variables showed that the seasonal variation coefficient of temperature (bio4), the lowest temperature in the coldest month (bio6), annual precipitation (bio12), seasonal variation of precipitation (bio15), human activity (hf), and the average ultraviolet radiation (UV-B3) in the highest month were the key factors affecting E. brevicornu selection of suitable habitats. This study provided important reference for the protection of the wild population of E. brevicornu and the selection of artificial planting areas in the future.
Keywords: Epimedium brevicornu, Maxent, Climate Change, Potential suitable distribution, Environmental Variables
Received: 27 Nov 2024; Accepted: 30 May 2025.
Copyright: © 2025 Liu, Zhuo, Wang, Peng and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Danping Xu, College of Life Science, China West Normal University, Nanchong, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.