ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Functional Plant Ecology
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1607404
Positive Soil Responses to Different Vegetation Restoration Measures in Desert Photovoltaic Power Stations
Provisionally accepted- 1Inner Mongolia Agricultural University, Hohhot, China
- 2Inner Mongolia Academy of Forestry Sciences, Hohhot, Inner Mongolia Autonomous Region, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Scientific and reasonable vegetation restoration plays a pivotal role in enhancing soil quality, boosting ecosystem services, and ensuring the long-term stable operation of photovoltaic (PV) power stations in desert regions. To elucidate the response mechanisms of soil under different vegetation restoration implemented in PV power stations located in sandy areas, this study selected the PV power plant in Duguitala Township of the Hobq Desert as a representative research site. A systematic evaluation was conducted on the effects of four artificial vegetation restoration strategies, namely, Leymus chinensis (LC), Glycyrrhiza uralensis (GU), Artemisia ordosica (AO), and Hedysarum scoparium (HS) under panels and between panels. This analysis aimed to clarify the influence of different vegetation restoration approaches on soil quality in sandy regions and their underlying mechanisms. The findings revealed that these vegetation restoration measures significantly impacted soil texture, bulk density (BD), soil porosity (SP), soil water content, and water retention capacity. Specifically, LC and GU markedly improved soil physical structure and water retention capacities. Vegetation restoration substantially enhanced soil nutrient accumulation, with LC achieving the highest levels of multiple soil nutrient indices (total nitrogen (TN), total phosphorus (TP), and available potassium (AK)), HS exhibiting the highest level of available phosphorus (AP), and GU demonstrating superiority in total potassium (TK). These diverse vegetation restoration strategies exhibited potential advantages in improving soil fertility and promoting nutrient cycling at locations under PV panels. The soil quality index (SQI) showed that the effectiveness of the different vegetation measures in enhancing soil quality was ranked GU>LC>HS>AO>CK. This study not only provides robust theoretical support for ecological restoration in desert PV plants, but also offers practical experience applicable to vegetation restoration efforts in similar ecological environments, thereby possessing significant ecological and practical value.
Keywords: photovoltaic, Vegetation restoration, Soil nutrients, desert, soil quality index
Received: 07 Apr 2025; Accepted: 07 May 2025.
Copyright: © 2025 Meng, Meng, Jia, Li, Cai and Gao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Zhongju Meng, Inner Mongolia Agricultural University, Hohhot, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.