ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Abiotic Stress
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1622308
Leaf hydraulic decline coordinates stomatal and photosynthetic limitations through anatomical adjustments under drought stress in cotton
Provisionally accepted- 1Hebei Agricultural University, Baoding, China
- 2Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- 3National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Drought stress detrimentally impacts leaf water transport, lowering transpiration and photosynthetic efficiency and ultimately reducing seed cotton yield. This study investigated the relationship between leaf hydraulic and photosynthetic traits in cotton under three moisture treatments: control (CK), moderate drought (MD), and severe drought (SD). By day 28 after drought stress, drought stress significantly impaired leaf hydraulics, as demonstrated by decreases in leaf hydraulic conductivity (Kleaf) (9.81% under MD, 12.93% under SD) and leaf water potential (5.79% under MD, 17.54% under SD). Key contributing factors included reduced xylem vessel diameter and number, diminished minor vein density, and decreased aquaporin gene expression. In addition, stomatal width and aperture were significantly reduced with increasing drought severity. Compared with CK, stomatal width and aperture decreased by 6.83% and 33 13.22% under MD, and by 20.59% and 19.92% under HD. These changes resulted in lower stomatal conductance, net photosynthetic rate, and biomass accumulation, inhibiting growth and reducing plant height, stem diameter, and leaf area. The
Keywords: Drought stress, Leaf hydraulic conductivity, leaf anatomy, Stomatal characteristics, Photosynthetic traits
Received: 03 May 2025; Accepted: 16 Jun 2025.
Copyright: © 2025 Li, Wang, Zhu, Zhang, Qi, Zhang, Sun, Zhang, Lei, Li, Li, Wang and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Cundong Li, Hebei Agricultural University, Baoding, China
Zhanbiao Wang, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, China
Liantao Liu, Hebei Agricultural University, Baoding, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.