ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Genetics, Epigenetics and Chromosome Biology
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1640247
Genome-Wide Identification and Gene Expression Analysis of the Malate Dehydrogenase (MDH) Gene Family in Eucalyptus grandis
Provisionally accepted- 1Research Institute of Tropical Forestry Chinese Academy of Forestry, Guangzhou, China
- 2Fujian Agriculture and Forestry University, Fuzhou, China
- 3Shangluo University, Shangluo, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Malate dehydrogenases are pivotal in plant metabolism and stress responses, yet their evolutionary dynamics and functional diversification in woody angiosperms remain underexplored. This study comprehensively characterized the Eucalyptus grandis MDH (EgMDH) gene family to elucidate its roles in development and environmental adaptation. We identified 14 EgMDH genes and conducted phylogenetic, structural, and syntenic analyses to trace their evolutionary origins. Transcriptional networks were deciphered using cis-regulatory element analysis and protein interaction predictions. Spatiotemporal expression under hormone treatments (JA, SA), abiotic stresses (salt, cold), and nutrient deficiencies (phosphate, nitrogen, and boron) was profiled via transcriptome data or RT-qPCR experiments. Phylogenetics revealed three MDH clades: green algal-derived Groups I/II and red algal-derived Group III. Phylogenetics analysis with model plants revealed that Eucalyptus lacked Group III MDHs, while Poplar lacked Group II members, indicating lineage-specific gene loss in woody angiosperms. Four segmental duplicated paralog pairs (EgMDH1/3, 6/9, 10/11, 12/14) exhibited conserved motifs, exon distributions, and synteny with woody dicots, underscoring structural conservation across angiosperms. Sixty transcription factors (TFs) coordinated EgMDH expression, linking them to energy/stress adaptation and secondary metabolism. Subtype-specific regulators (e.g., GT-2, AIL6, NLP6) exclusively targeted Group II EgMDHs, indicating cladedivergent regulatory networks. EgMDHs showed tissue-and stage-dependent expression, particularly during late adventitious root development. EgMDH genes also exhibited temporally distinct expression patterns under JA treatment, SA treatment, salt stress and cold stress conditions. Notably, eleven EgMDH proteins interacted with PPC1/ASP3, coupling malate metabolism to nitrogen/phosphate homeostasis and C/N balance. Taken together, EgMDH genes displayed phased temporal and tissue-specific expression under Pi/N/B deficiencies. These results revealed that coordinated transcriptional reprogramming and protein interactions of EgMDHs were critical for nutrient stress adaptation. Overall, this study suggested that EgMDH genes underwent lineagespecific diversification and played important roles in development and stress resilience.
Keywords: MDH, Eucalyptus grandis, Gene Expression Regulation, salt stress, cold stress, Phosphate starvation, nitrogen deficiency, boron deficiency
Received: 03 Jun 2025; Accepted: 21 Jul 2025.
Copyright: © 2025 Xing, Xu, Yang, Deng, Li, Zhao, Lu, Ma and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Liuyin Ma, Fujian Agriculture and Forestry University, Fuzhou, China
Guangyou Li, Research Institute of Tropical Forestry Chinese Academy of Forestry, Guangzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.