Your new experience awaits. Try the new design now and help us make it even better

ORIGINAL RESEARCH article

Front. Plant Sci.

Sec. Plant Symbiotic Interactions

Volume 16 - 2025 | doi: 10.3389/fpls.2025.1643655

Effects of Grazing on Plant Functional Groups across Spatial Scales in Stipa breviflora Desert Steppe

Provisionally accepted
Li  WangLi Wangxiaoyu  duxiaoyu dujuhong  liujuhong liu*jun  zhangjun zhangShijie  LvShijie Lv
  • 内蒙古农业大学, 呼和浩特, China

The final, formatted version of the article will be published soon.

This study investigated the Stipa breviflora desert steppe through multi-scale (50m×50m, 25m×25m, 2.5m×2.5m) and grazing intensity (no grazing vs. heavy grazing) comparative analyses, revealing the response mechanisms of plant functional group diversity, interspecific associations, and stability. Key findings include: (1) Heavy grazing significantly reduced functional group diversity and evenness, while the Margalef richness index increased at the 25m×25m scale due to patchy invasion of grazing-tolerant species. (2) Interspecific associations exhibited scale-dependent patterns: Large-scale (50m×50m) associations were driven by environmental heterogeneity (e.g., resource competition and complementarity), whereas small-scale (2.5m×2.5m) interactions were dominated by direct species interactions (mutualism or exclusion). (3) Grazing-induced structural simplification through "environmental filtering", heavy grazing reduced functional group quantity, forming simplified symbiotic networks (PC≥0.6) between perennial grasses and annual/biennial plants, while significantly suppressing woody plants and forbs (Perennial forbs, Shrubs and semi-shrubs). (4) Stability analysis demonstrated higher stability of perennial grasses and forbs in ungrazed areas, though the overall system remained unstable. Annual/biennial plants and shrubs/semi-shrubs generally exhibited low disturbance resistance. The study proposes a multi-scale grassland restoration strategy: optimizing resource allocation at large scales while enhancing key species interactions at small scales. These findings provide theoretical foundations for the ecological restoration of degraded desert steppes and adaptive grazing regimes. Future research should integrate climate change and socioeconomic factors to develop more resilient grassland ecosystem management frameworks.

Keywords: Desert steppe, Spatial scale, Heavy grazing, Plant functional group, Interspecific associations

Received: 09 Jun 2025; Accepted: 02 Sep 2025.

Copyright: © 2025 Wang, du, liu, zhang and Lv. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: juhong liu, 内蒙古农业大学, 呼和浩特, China

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.