ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Sustainable and Intelligent Phytoprotection
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1643945
Monitoring of Vegetation Chlorophyll Content in Photovoltaic Areas Using UAV-Mounted Multispectral Imaging
Provisionally accepted- Inner Mongolia Agricultural University, Hohhot, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The rapid and accurate acquisition of vegetation information, particularly chlorophyll content, is essential for effective vegetation management and ensuring the safe operation of photovoltaic power plants. In this study, the vegetation within a photovoltaic power plant served as the research subject, and multispectral images were acquired using unmanned aerial vehicles, while in situ chlorophyll measurements were obtained through ground-based sampling at multiple time points. From these images, twenty vegetation indices and thirty-two texture features were extracted. To reduce feature redundancy and enhance modeling efficiency, feature selection was performed using the minimum redundancy maximum relevance method and Pearson correlation analysis. The selected features were then used in three modeling strategies-vegetation index-based, texture feature-based, and fused index-texture-based-employing three conventional machine-learning regressors (partial least squares regression, random forest, support vector machine regression) and three deep-learning regressors (back propagation neural network, convolutional neural network, multilayer perceptron).Based on the optimal model, a spatiotemporal distribution map of chlorophyll content within the study area was generated. The results indicated that both vegetation indices and texture features exhibited significant correlations with chlorophyll content, with the strongest correlation observed between the green normalized difference vegetation index (GNDVI) and the NIR_Mean (Pearson coefficients of 0.82 and 0.65, respectively). Moreover, the fusion of vegetation indices and texture features effectively improved the accuracy of chlorophyll inversion models; among the six regression algorithms tested, the multilayer perceptron model achieved the highest performance (R² = 0.874, RMSE = 3.725, MAPE = 3.982%). This study provides a novel method for monitoring chlorophyll content in vegetation within photovoltaic power plant regions and offers informational support for refined regional vegetation management.
Keywords: UAV, Chlorophyll content, vegetation index, Texture feature, deep learning
Received: 09 Jun 2025; Accepted: 28 Jul 2025.
Copyright: © 2025 Li, Wang, Li, Yang and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Ming Li, Inner Mongolia Agricultural University, Hohhot, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.