ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Sustainable and Intelligent Phytoprotection
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1591989
This article is part of the Research TopicIntegration of Advanced Technologies in Orchard ManagementView all 5 articles
YOLOv8-Scm: An improved model for citrus fruit sunburn identification and classification in complex natural scenes
Provisionally accepted- 1Southwest University, Chongqing, China
- 2Guangxi Academy of Agricultural Science, Nanning, Guangxi Zhuang Region, China
- 3Quzhou Academy of agricultural and Forestry Sciences, ZheJiang Provence, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Citrus ranks among the most widely cultivated and economically vital fruit crops globally, with southern China being a major production area. In recent years, global warming has intensified extreme weather events, such as prolonged high temperature and strong solar radiation, posing increasing risks to citrus production,leading to significant economic losses. Existing identification methods struggle with accuracy and generalization in complex environments, limiting their real-time application. This study presents an improved, lightweight citrus sunburn recognition model, YOLOv8-Scm, based on the YOLOv8n architecture. Three key enhancements are introduced: (1) DSConv module replaces the standard convolution for a more efficient and lightweight design, (2) Global Attention Mechanism (GAM) improves feature extraction for multi-scale and occluded targets, and (3) EIoU loss function enhances detection precision and generalization. The YOLOv8-Scm model achieves improvements of 2.0% in mAP50 and 1.5% in Precision over the original YOLOv8n, with only a slight increase in computational parameters (0.182M). The model's Recall rate decreases minimally by 0.01%.Compared to other models like SSD, Faster R-CNN, YOLOv5n, YOLOv7-tiny, YOLOv8n, and YOLOv10n, YOLOv8-Scm outperforms in mAP50, Precision, and Recall, and is significantly more efficient in terms of computational parameters. Specifically, the model achieves a mAP50 of 92.7%, a Precision of 86.6%, and a Recall of 87.2%. These results validate the model's superior capability in accurately detecting citrus sunburn across diverse and challenging natural scenarios. YOLOv8-Scm enables accurate, real-time citrus sunburn monitoring, providing strong technical support for smart orchard management and practical deployment.
Keywords: YOLO v8n, YOLOv8-Scm, Citrus sunburn, Smart orchard monitoring, object detection
Received: 11 Mar 2025; Accepted: 02 Jun 2025.
Copyright: © 2025 Cong, Chen, Bing, Chen, Wu, Guo and Zheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Guoxun Cong, Southwest University, Chongqing, China
Zheng Guo, Southwest University, Chongqing, China
Yongqiang Zheng, Southwest University, Chongqing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.